一元二次方程課件。
我們常說,機(jī)會是留給有準(zhǔn)備的人。當(dāng)幼兒園教師的工作遇到難題時,我們經(jīng)常會用提前準(zhǔn)備好的資料進(jìn)行參考。資料包含著人類在社會實(shí)踐,科學(xué)實(shí)驗(yàn)和研究過程中所匯集的經(jīng)驗(yàn)。參考資料會讓未來的學(xué)習(xí)或者工作做得更好!你知不知道我們常見的幼師資料有哪些呢?為了讓你在使用時更加簡單方便,下面是小編整理的“一元二次方程課件”,供有需要的朋友參考借鑒,希望可以幫助到你。
本班有學(xué)生53人,數(shù)學(xué)課還比較喜歡,學(xué)習(xí)熱情也較高,課堂氣氛比較活躍。學(xué)生在學(xué)過一元一次方程的基礎(chǔ)上學(xué)習(xí),還是對方程有一定的認(rèn)識。所以老師放手讓學(xué)生自學(xué)、合作的探究方式來學(xué)習(xí)此課。但有極少部分學(xué)生較懶,學(xué)習(xí)習(xí)慣差,不愿思考問題??傮w來說學(xué)生喜歡動手操作,喜歡小組合作的學(xué)習(xí)方式。
1. 通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情。
2. 感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
2. 使學(xué)生理解并能夠掌握一元二次方程的一般表達(dá)式以及各種特殊形式。
1. 通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程的概念給一元二次方程下定義。
1.一元二次方程的概念及其一般形式和用一元二次方程有關(guān)概念解決問題。
2.通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。
情境創(chuàng)設(shè)(大屏幕投影教材24頁):要設(shè)計(jì)一座2米高的人體雕塑,使雕塑的上部(腰上部)與下部(腰下部)的高度比,等于下部與全部(全身)的高度比,雕塑的下部應(yīng)設(shè)計(jì)為多高?
X2=2(2-x)整理得X2+2x-4=0,這是什么方程,與以前學(xué)過的一元一次方程有什么不同,這節(jié)課我們就來學(xué)習(xí)它---------一元二次方程
1.問題1(多媒體課件)有一塊長方形鐵皮,長100cm,寬50cm,在它的四角各切去一個同樣的正方形,然后將四周突出部分折起,就能制作一個無蓋方盒。如果要制作的無蓋方盒的底面積為3600cm2,那么鐵皮各角應(yīng)切去多大的正方形?
如果假設(shè)切去的正方形邊長為x,那么盒底的長是________,寬是_____,根據(jù)方盒的底面積為3600cm2,得:_______.
老師點(diǎn)評并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理.
問題2要組織一次排球邀請賽,參賽的每兩個隊(duì)之間都要比賽一場。根據(jù)場地和時間等條件,賽程計(jì)劃安排7天,每天安排4場比賽,比賽組織者應(yīng)邀請多少個隊(duì)參賽?
單循環(huán)比賽是指就表示每個隊(duì)要和其他所有的隊(duì)都賽到了,如果有4個隊(duì)總共賽_______場,5個隊(duì)呢?8個隊(duì)呢?n個隊(duì)呢?
同學(xué)們用基本線段法和定點(diǎn)發(fā)射法總結(jié)規(guī)律:
場數(shù)=(隊(duì)數(shù)-1)+(隊(duì)數(shù)-2)+(隊(duì)數(shù)-3)+。。。。。。+1
列方程得x(x-1)÷2=28?整理得X2-x=56解方程可以得出參賽隊(duì)數(shù)。
請口答下面問題.
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項(xiàng)式一樣只有式子?
老師點(diǎn)評:(1)都只含一個未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程.
因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.
一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.
一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).
(1)為什么a≠0?b和c能等于0嗎?(2)特殊式:ax2+bx=0,ax2+c=0
例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必須運(yùn)用整式運(yùn)算進(jìn)行整理,包括去括號、移項(xiàng)、合并同類項(xiàng)等.
其中二次項(xiàng)系數(shù)為4,一次項(xiàng)系數(shù)為-26,常數(shù)項(xiàng)為22.
例2.(學(xué)生活動:請二至三位同學(xué)上臺演練)??將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)、二次項(xiàng)系數(shù);一次項(xiàng)、一次項(xiàng)系數(shù);常數(shù)項(xiàng).
1.在下列方程中,一元二次方程的個數(shù)是(??).
①3x2+7=0??②ax2+bx+c=0??③(x-2)(x+5)=x2-1???④3x2-?=0
2.方程2x2=3(x-6)化為一般形式后二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)分別為(?).
A.2,3,-6????B.2,-3,18????C.2,-3,6?????D.2,3,6
3.px2-3x+p2-q=0是關(guān)于x的一元二次方程,則(??).
A.p=1?????B.p>0?????C.p≠0?????D.p為任意實(shí)數(shù)
4.關(guān)于x的方程(m2-4)x2+mx-m=0是一元二次方程的條件是()
1.方程3x2-3=2x+1的二次項(xiàng)系數(shù)為________,一次項(xiàng)系數(shù)為_________,常數(shù)項(xiàng)為_________.
2.關(guān)于x的方程(a-1)x2+3x=0是一元二次方程,則a的取值范圍是_________
3.關(guān)于x的方程(m+1)xm-1+mx-1=0是一元一次方程,則m=________
《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少?
如果假設(shè)門的高為x尺,那么,這個門的寬為_______尺,根據(jù)題意,得________.
程序?:1.學(xué)生自己獨(dú)立完成2.老師給組長副組長打分3.組長給組員打分4.學(xué)生交流疑難雜癥5.學(xué)生總結(jié)易錯點(diǎn)和方法6.老師作最后強(qiáng)調(diào)。
本節(jié)課要掌握:
(1)???????一元二次方程的概念;
(2)???????一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項(xiàng)、二次項(xiàng)系數(shù),一次項(xiàng)、一次項(xiàng)系數(shù),常數(shù)項(xiàng)的概念及其它們的運(yùn)用.
(4)???????利用一元二次方程解決實(shí)際生活問題。
例3.求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.
分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+17≠0即可.
∴不論m取何值,該方程都是一元二次方程.
1.了解一元二次方程及有關(guān)概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,應(yīng)用一元二次方程概念解決一些簡單題目。
2.掌握通過配方法、公式法、因式分解法降次──解一元二次方程,掌握依據(jù)實(shí)際問題建立一元二次方程的數(shù)學(xué)模型的方法,應(yīng)用熟練掌握以上知識解決問題。
1.一元二次方程及其它有關(guān)的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題。
2.判定一個數(shù)是否是方程的根;
3.用配方法、公式法、因式分解法降次──解一元二次方程。
4.運(yùn)用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會降次──轉(zhuǎn)化的數(shù)學(xué)思想。
5.利用實(shí)際問題建立一元二次方程的數(shù)學(xué)模型,并解決這個問題.
1.一元二次方程配方法解題。
2.通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。
3.用公式法解一元二次方程時的討論。
4.通過根據(jù)平方根的意義解形如x2=n,知識遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程。
5.建立一元二次方程實(shí)際問題的數(shù)學(xué)模型,方程解與實(shí)際問題解的區(qū)別。
6.由實(shí)際問題列出的一元二次方程解出根后還要考慮這些根是否確定是實(shí)際問題的根。
1.一元二次方程:方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的次數(shù)是2(二次)的方程,叫做一元二次方程。
(2)且未知數(shù)次數(shù)次數(shù)是2;
(3)是整式方程。要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進(jìn)行整理。如果能整理為 ax2+bx+c=0(a≠0)的形式,則這個方程就為一元二次方程。
3. 一元二次方程的一般形式:一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0)。
一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng)。
在學(xué)習(xí)過程中,即要爭取教師的指導(dǎo)和幫助,但是又不能過分依賴教師, 必須自己主動地去學(xué)習(xí)、去探索、去獲取,應(yīng)該在自己認(rèn)真學(xué)習(xí)和研究的基礎(chǔ)上去尋求教師和同學(xué)的幫助。
在學(xué)習(xí)過程中,對課本的內(nèi)容要認(rèn)真研究,提出疑問,追本究源。對每一個概念、公式、定理都要弄清其來龍去脈、前因后果、內(nèi)在聯(lián)系,以及蘊(yùn)含于推導(dǎo)過程中的數(shù)學(xué)思想和方法。在解決問題時,要盡量采用不同的途徑和方法,要克服那種死守書本、機(jī)械呆板、不知變通的學(xué)習(xí)方法。
在學(xué)習(xí)過程中,要準(zhǔn)確地掌握抽象概念的本質(zhì)含義,了解從實(shí)際模型中抽象為理論的演變過程。對所學(xué)理論知識,要在更大范圍內(nèi)尋求它的具體實(shí)例,使之具體化,盡量將所學(xué)的理論知識和思維方法應(yīng)用于實(shí)踐。
課本是獲得知識的主要來源,但不是唯一的來源。在學(xué)習(xí)過程中,除了認(rèn)真研究課本以外,還要閱讀有關(guān)的課外資料,來擴(kuò)大知識領(lǐng)域。同時在廣泛閱讀的基礎(chǔ)上,進(jìn)行認(rèn)真研究,掌握其知識結(jié)構(gòu)。
模仿是數(shù)學(xué)學(xué)習(xí)中不可缺少的學(xué)習(xí)方法,但是決不能機(jī)械地模仿,應(yīng)該在消化理解的基礎(chǔ)上,開動腦筋,提出自己的見解和看法,而不拘泥于已有的框框,不囿于現(xiàn)成的模式。
課堂上學(xué)習(xí)的內(nèi)容,必須當(dāng)天消化,要先復(fù)習(xí),后做練習(xí),復(fù)習(xí)工作必須經(jīng)常進(jìn)行,每一單元結(jié)束后,應(yīng)將所學(xué)知識進(jìn)行概括整理,使之系統(tǒng)化、深刻化。
學(xué)習(xí)中的總結(jié)和評價(jià)有利于知識體系的建立、解題規(guī)律的掌握、學(xué)習(xí)方法與態(tài)度的調(diào)整和評判能力的提高。在學(xué)習(xí)過程中,應(yīng)注意總結(jié)聽課、閱讀和解題中的收獲和體會。
做數(shù)學(xué)題就是要注重計(jì)算,很多孩子成績丟分在計(jì)算上,解題步驟沒有錯,但是計(jì)算的過程中出現(xiàn)失誤,導(dǎo)致丟分,影響整體成績,所以要重視計(jì)算的作用,初一階段剛開學(xué)就會學(xué)到有理數(shù),絕對值,倒數(shù),相反數(shù),一元一次方程,單項(xiàng)式和多項(xiàng)式等基本的計(jì)算問題,每一個知識點(diǎn)都脫離不了計(jì)算的考察。整式,方程,不等式等后續(xù)重要知識點(diǎn)都基于有理數(shù)的計(jì)算。后續(xù)的分式計(jì)算更凸顯了孩子的計(jì)算問題。所以要想提高數(shù)學(xué)成績,一定要重視計(jì)算。
我們在考試以后會發(fā)現(xiàn)有很多不應(yīng)該做錯的題,因?yàn)榇笠馐Я朔謹(jǐn)?shù),所以要想提高數(shù)學(xué)成績,一定要注意細(xì)節(jié),在考試的過程中不該丟的不能丟,分分計(jì)較,做到顆粒歸倉。解題時即使思路正確,不注意細(xì)節(jié)也能丟分??荚嚪址直容^,每一分都代表了一個人的素質(zhì)和水平。這就是細(xì)節(jié)決定成敗。
要想提高數(shù)學(xué)成績,在做數(shù)學(xué)題的過程中要善于發(fā)現(xiàn)規(guī)律。不要總是硬套公式,可以嘗試一下思維的轉(zhuǎn)換,這樣可能給自己帶了不一樣的轉(zhuǎn)機(jī),其實(shí)數(shù)學(xué)和其他的科目是一樣,就比如語文一樣的話,可以用其他的話代替,但是意思并沒有轉(zhuǎn)變,數(shù)學(xué)的公式也是一樣,最終的答案是一個,不過你可以用其他的方法進(jìn)行解答,所以善于發(fā)現(xiàn)數(shù)學(xué)的解題規(guī)律,轉(zhuǎn)變思路也是提高數(shù)學(xué)成績的一條有效途徑。
要想提高數(shù)學(xué)成績,在考試前一定要有高水平高效率的復(fù)習(xí)。一道題,剛開始你不熟悉,那么,你需要做十遍甚至更多遍,把整個題目做到滾瓜爛熟。這個時候,如果你還在不斷地重復(fù)做這道題,那么就是低水平重復(fù),高手們會當(dāng)這道題熟悉了,他就開始放棄了,把大把時間拿來,去攻克自己不熟悉的題目,不斷地把陌生轉(zhuǎn)化為熟悉。他們也在重復(fù),但是,是高水平重復(fù)。
學(xué)習(xí)目標(biāo):
1、使學(xué)生會用列一元二次方程的方法解決有關(guān)增長率的應(yīng)用題;
2、進(jìn)一步培養(yǎng)學(xué)生分析問題、解決問題的能力。
學(xué)習(xí)重點(diǎn):
會列一元二次方程解關(guān)于增長率問題的應(yīng)用題。
學(xué)習(xí)難點(diǎn):
如何分析題意,找出等量關(guān)系,列方程。
學(xué)習(xí)過程:
一、 復(fù)習(xí)提問:
列一元二次方程解應(yīng)用題的一般步驟是什么?
二、探索新知
1.情境導(dǎo)入
問題:“坡耕地退耕還林還草”是國家為了解決西部地區(qū)水土流失生態(tài)問題、幫助廣大農(nóng)民脫貧致富的一項(xiàng)戰(zhàn)略措施,某村村長為帶領(lǐng)全村群眾自覺投入“坡耕地退耕還林還草”行動,率先示范。2002年將自家的坡耕地全部退耕,并于當(dāng)年承包了30畝耕地的還林還草及管理任務(wù),而實(shí)際完成的畝數(shù)比承包數(shù)增加的百分率為x,并保持這一增長率不變,2003年村長完成了36.3畝坡耕地還林還草任務(wù),求①增長率x是多少?②該村有50戶人家,每戶均地村長2003年完成的畝數(shù)為準(zhǔn),國家按每畝耕地500斤糧食給予補(bǔ)助,則國家將對該村投入補(bǔ)助糧食多少萬斤?
2.合作探究、師生互動
教師引導(dǎo)學(xué)生分析關(guān)于環(huán)保的情境導(dǎo)入問題,這是一個平均增長率問題,它的基數(shù)是30畝,平均增長的百分率為x,那么第一次增長后,即2002年實(shí)際完成的畝數(shù)是30(1+x),第二次增長后,即2003年實(shí)際完成的畝數(shù)是30(1+x)2,而這一年村長完成的畝數(shù)正好是36.3畝.
教師引導(dǎo)學(xué)生運(yùn)用方程解決問題:
①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增長的百分率為10%
②全村坡耕地還林還草為50×36.3=1 815(畝),國家將補(bǔ)助糧食1 815×500=907 500(斤)=90.75(萬斤)
三、例題學(xué)習(xí)
說明:題目中求平均每月增長的百分率,直接設(shè)增長的百分率為x,好處在于計(jì)算簡便且直接得出所求。
例、某產(chǎn)品原來每件是600元,由于連續(xù)兩次降價(jià),現(xiàn)價(jià)為384元,如果兩降價(jià)的百分率相同,求每次降價(jià)百分之幾?
(小組合作交流教師點(diǎn)撥)
時間 基數(shù) 降價(jià) 降價(jià)后價(jià)錢
第一次 600 600x 600(1-x)
第二次 600(1-x) 600(1-x)x 600(1-x)2
(由學(xué)生寫出解答過程)
四、鞏固練習(xí)
一商店1月份的利潤是2500元,3月份的利潤達(dá)到3000元,這兩個月的利潤平均增長的百分率是多少(精確到0.1%)?
五、課堂總結(jié):
1、善于將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,嚴(yán)格審題,弄清各數(shù)據(jù)間相互關(guān)系,正確列出方程。
2、注意解方程中的巧算和方程兩個根的取舍問題。
六、反饋練習(xí):
1.某商品計(jì)劃經(jīng)過兩個月的時間將售價(jià)提高20%,設(shè)每月平均增長率為x,則列出的方程為()
A.x+(1+x)x=20% B.(1+x)2=20%
C.(1+x)2=1.2 D.(1+x%)2=1+20%
2.某工廠計(jì)劃兩年內(nèi)降低成本36%,則平均每年降低成本的百分率是()
3.某種藥劑原售價(jià)為4元,經(jīng)過兩次降價(jià),現(xiàn)在每瓶售價(jià)為2.56元,問平均每次降低百分之幾?
【教學(xué)目標(biāo)】
1、會根據(jù)具體問題中的數(shù)量關(guān)系列一元二次方程并求解。
2、能根據(jù)問題的實(shí)際意義,檢驗(yàn)所得結(jié)果是否合理。
3、進(jìn)一步掌握列方程解應(yīng)用題的步驟和關(guān)鍵。
【教學(xué)過程】
一、復(fù)習(xí)回顧:
1、解一元二次方程都有哪些方法?(學(xué)生口答)
2、列一元一次方程解應(yīng)用題有哪些步驟?(學(xué)生口答)
①審題;②設(shè)未知數(shù);③找相等關(guān)系;④列方程;⑤解方程;⑥答
二、問題探究:
(一)思考課本探究1回答下列問題:
(1)設(shè)每輪傳染中平均一個人傳染x個人,那么患流感的這個人在第一輪傳染中傳染了 人;第一輪傳染后,共有 人患了流感。
(2)在第二輪傳染中,傳染源是 人,這些人中每一個人又傳染了 人,那么第二輪傳染了 人,第二輪傳染后,共有 人患流感。
(3)根據(jù)等量關(guān)系列方程并求解。為什么要舍去一解?
(4)通過對這個問題的探究,你對類似的傳播問題中的數(shù)量關(guān)系有新的認(rèn)識嗎?
(5)完成教材思考:如果按照這樣的傳播速度,三輪傳染后,有多少人患流感?
(學(xué)生在交流中解決問題,教師深入小組討論,對疑惑較多的問題要點(diǎn)撥;前兩個問是解題的關(guān)鍵,可作適當(dāng)點(diǎn)撥。最后思考題,可讓學(xué)生試試獨(dú)立完成。教給學(xué)生如何審題,分析題。)
三、例題學(xué)習(xí):
例1:青山村種的水稻2001年平均每公頃產(chǎn)7200kg,2003年平均每公頃產(chǎn)8450kg,求水稻每公頃產(chǎn)量的年平均增長率。 (學(xué)生獨(dú)立思考、練習(xí)。一學(xué)生板書,教師巡視后講解)
例2:(教材探究2)兩年前生產(chǎn)1噸甲種藥品的成本是5000元,生產(chǎn)1噸乙種藥品的成本是6000元,隨著生產(chǎn)技術(shù)的進(jìn)步,現(xiàn)在生產(chǎn)1噸甲種藥品的成本是3000元,生產(chǎn)1噸乙種藥品的成本是3600元,哪種藥品成本的年平均下降率較大?
(給學(xué)生分組求解,然后比較哪個小組做的有快又準(zhǔn)。最后比較哪種藥品成本平均下降率較大。)
四、課堂練習(xí):(學(xué)生獨(dú)立思考、練習(xí)。一學(xué)生板書,教師巡視后講解)
1、某種植物的主干長出若干數(shù)目的枝干,每個枝干又長出同樣數(shù)目的小分支,主干、支干和小分支的總數(shù)是91,每個支干長出多少小分支?
2、有一人患了流感,經(jīng)過兩輪傳染后共有121人患了流感,毎輪傳染中平均一個人傳染了幾個人?
五、總結(jié)反思:(由學(xué)生自己完成,教師作適當(dāng)補(bǔ)充)
1、列一元二次方程解應(yīng)用題的步驟:審、設(shè)、找、列、解、答。最后要檢驗(yàn)根是否符合實(shí)際意義。
2、探究2是平均增長率或降低率問題。若平均增長(降低)率為x,增長(或降低)前的基數(shù)是a,增長(或降低)n次后的量是b,則有: (常見n=2)
教后記:
本節(jié)課是一元二次方程的應(yīng)用第一課時。通過本節(jié)課的教學(xué),總體感覺調(diào)動了學(xué)生的積極性,能夠充分發(fā)揮學(xué)生的主體作用,以現(xiàn)實(shí)生活情境問題入手,激發(fā)了學(xué)生思維的火花,具體我以為有以下幾個特點(diǎn):
一、通過學(xué)生口答,復(fù)習(xí)了列方程解應(yīng)用題的一般步驟及解一元二次方程的方法,為學(xué)習(xí)本節(jié)知識打好了基礎(chǔ)。
二、問題探究通過問題串讓學(xué)生解決的問題由淺入深,由易到難,也讓學(xué)生解決問題的能力逐級上升,這樣學(xué)生感到成功機(jī)會增加,從而有一種積極的學(xué)習(xí)態(tài)度,同時學(xué)生在學(xué)習(xí)中相互交流、相互學(xué)習(xí),共同提高。
三、本節(jié)課第一個例題,是增長率問題中的.一個典型例題,我在引導(dǎo)學(xué)生解決此題之后,進(jìn)一步總結(jié)了列方程解應(yīng)用題的步驟。不僅關(guān)注結(jié)果更關(guān)注過程,讓學(xué)生養(yǎng)成良好的解題習(xí)慣。
四、在課堂中始終貫徹?cái)?shù)學(xué)源于生活又用于生活的數(shù)學(xué)觀念,同時用方程來解決問題,使學(xué)生樹立一種數(shù)學(xué)建模的思想。
五、課堂上多給學(xué)生展示的機(jī)會,讓學(xué)生走上講臺,向同學(xué)們展示自己的聰明才智。同時在這個過程中,更有利于發(fā)現(xiàn)學(xué)生分析問題與解決問題獨(dú)到見解及思維誤區(qū),以便指導(dǎo)今后教學(xué)??傊ㄟ^各種啟發(fā)、激勵的教學(xué)手段,幫助學(xué)生形成積極主動求知態(tài)度,課堂收效大。
六、需改進(jìn)的方面:
1、由于怕完不成任務(wù),給學(xué)生獨(dú)立思考時間安排有些不合理,這樣容易讓思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。例如例2有多種解法,課后一些學(xué)生與老師交流,但課上沒有得到充分的展示、
2、只考慮撲捉學(xué)生的思維亮點(diǎn),一學(xué)生列錯了方程,我沒有給予及時糾正。導(dǎo)致使一些同學(xué)陷入誤區(qū)、
3、下課后很多學(xué)生和我溝通課上一學(xué)生的錯誤問題,但他們上課并不敢提出,有點(diǎn)卻場,所以平時要培養(yǎng)學(xué)生敢想敢說敢于發(fā)表個人的不同見解的學(xué)風(fēng)。
學(xué)習(xí)目標(biāo)
1、一元二次方程的求根公式的推導(dǎo)
2、會用求根公式解一元二次方程.
3、通過運(yùn)用公式法解一元二次方程的訓(xùn)練,提高學(xué)生的運(yùn)算能力,養(yǎng)成良好的運(yùn)算習(xí)慣
學(xué)習(xí)重、難點(diǎn)
重點(diǎn):一元二次方程的求根公式.
難點(diǎn):求根公式的條件:b2 -4ac≥0
學(xué)習(xí)過程:
一、自學(xué)質(zhì)疑:
1、用配方法解方程:2x2-7x+3=0.
2、用配方解一元二次方程的步驟是什么?
3、用配方法解一元二次方程,計(jì)算比較麻煩,能否研究出一種更好的方法,迅速求得一元二次方程的實(shí)數(shù)根呢?
二、交流展示:
剛才我們已經(jīng)利用配方法求解了一元二次方程,那你能否利用配方法的基本步驟解方程ax2+bx+c=0(a≠0)呢?
三、互動探究:
一般地,對于一元二次方程ax2+bx+c=0
(a≠0),當(dāng)b2-4ac≥0時,它的根是
用求根公式解一元二次方程的方法稱為公式法
由此我們可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系數(shù)a、b、c確定的.因此,在解一元二次方程時,先將方程化為一般形式,然后在b2-4ac≥0的前提條件下,把各項(xiàng)系數(shù)a、b、c的值代入,就可以求得方程的根.
注:(1)把方程化為一般形式后,在確定a、b、c時,需注意符號.
(2)在運(yùn)用求根公式求解時,應(yīng)先計(jì)算b2-4ac的值;當(dāng)b2-4ac≥0時,可以用公式求出兩個不相等的實(shí)數(shù)解;當(dāng)b2-4ac
四、精講點(diǎn)撥:
例1、課本例題
總結(jié):其一般步驟是:
(1)把方程化為一般形式,進(jìn)而確定a、b,c的值.(注意符號)
(2)求出b2-4ac的值.(先判別方程是否有根)
(3)在b2-4ac≥0的前提下,把a(bǔ)、b、c的直代入求根公式,求出 的值,最后寫出方程的根.
例2、解方程:
(1)2x2-7x+3=0 (2) x2-7x-1=0
(3) 2x2-9x+8=0 (4) 9x2+6x+1=0
五、糾正反饋:
做書上第P90練習(xí)。
六、遷移應(yīng)用:
例3、一個直角三角形三邊的長為三個連續(xù)偶數(shù),求這個三角形的三條邊長.
例4、求方程 的兩根之和以及兩根之積
教學(xué)目標(biāo)?:
知識與技能目標(biāo):1.使學(xué)生了解一元二次方程及整式方程的意義;2.掌握一元二次方程的一般形式,正確識別二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
過程與方法目標(biāo): 1.通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題和解決問題的能力;2.通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性.
情感與態(tài)度目標(biāo):由知識來源于實(shí)際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)列方程向?qū)W生滲透方程的思想方法,由此培養(yǎng)學(xué)生用數(shù)學(xué)的意識.。
教學(xué)重、難點(diǎn)與關(guān)鍵:
重點(diǎn):一元二次方程的意義及一般形式.
難點(diǎn):正確識別一般式中的“項(xiàng)”及“系數(shù)”。
教輔工具:
教學(xué)程序設(shè)計(jì):
程序
教師活動
學(xué)生活動
備注
創(chuàng)設(shè)
問題
情景
1.用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個角上截去四個相同的小正方形,然后把四邊折起來,就成為一個無蓋的長方體盒子,演示完畢,讓學(xué)生拿出事先準(zhǔn)備好的長方形紙片和剪刀,實(shí)際操作一下剛才演示的過程.學(xué)生的實(shí)際操作,為解決下面的問題奠定基礎(chǔ),同時培養(yǎng)學(xué)生手、腦、眼并用的能力.
2.現(xiàn)有一塊長80cm,寬60cm的薄鋼片,在每個角上截去四個相同的小正方形,然后做成底面積為1500cm2的無蓋的長方體盒子,那么應(yīng)該怎樣求出截去的小正方形的'邊長?
教師啟發(fā)學(xué)生設(shè)未知數(shù)、列方程,經(jīng)整理得到方程x2-70x+825=0,此方程不會解,說明所學(xué)知識不夠用,需要學(xué)習(xí)新的知識,學(xué)了本章的知識,就可以解這個方程,從而解決上述問題.
板書:“第十二章一元二次方程”.教師恰當(dāng)?shù)恼Z言,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣.
學(xué)生看投影并思考問題
通過章前引例和節(jié)前引例,使學(xué)生真正認(rèn)識到知識來源于實(shí)際,并且又為實(shí)際服務(wù),學(xué)習(xí)了一元二次方程的知識,可以解決許多實(shí)際問題,真正體會學(xué)習(xí)數(shù)學(xué)的意義;產(chǎn)生用數(shù)學(xué)的意識,調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中.同時讓學(xué)生感到一元二次方程的解法在本章中處于非常重要的地位.
探
究
新
知
1
1.復(fù)習(xí)提問
(1)什么叫做方程?曾學(xué)過哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含義?
(3)什么叫做分式方程?
2.引例:剪一塊面積為150cm2的長方形鐵片使它的長比寬多5cm,這塊鐵片應(yīng)怎樣剪?
引導(dǎo),啟發(fā)學(xué)生設(shè)未知數(shù)列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,得到整式方程和一元二次方程的概念.
整式方程:方程的兩邊都是關(guān)于未知數(shù)的整式,這樣的方程稱為整式方程.
一元二次方程:只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是2,這樣的整式方程叫做一元二次方程.
3.練習(xí):指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
(3)
一元二次方程的概念
教材分析:1.本節(jié)以生活中的實(shí)際問題為背景,引出一元二次方程的概念,讓學(xué)生掌握一元二次方程的特點(diǎn),歸納出一元二次方程的一般形式,給出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本節(jié)內(nèi)容是在前面所學(xué)方程、一元一次方程、整式、方程的解的基礎(chǔ)上進(jìn)行學(xué)習(xí),也是后面學(xué)習(xí)二次函數(shù)的一個基礎(chǔ)。
2.這些概念是全章后繼內(nèi)容的基礎(chǔ)。
3.讓學(xué)生體會數(shù)學(xué)來源于生活,又服務(wù)于生活的基本思想。
學(xué)情分析:1.授課班級學(xué)生基礎(chǔ)較差,學(xué)生成績參差不齊,差生較多。教學(xué)中應(yīng)給予充分思考的時間,注意講練結(jié)合,以學(xué)生為本,體現(xiàn)生本課堂的理念。
2.該班級學(xué)生在平時訓(xùn)練中已經(jīng)形成了良好的合作精神和合作氣氛,可以充分發(fā)揮合作的 優(yōu)勢,從而充分調(diào)動學(xué)生主動性和積極性,使課堂氣氛活躍,讓學(xué)生在愉快的環(huán)境中學(xué)習(xí)。
3.作為該班的班主任,同時又擔(dān)任該班的數(shù)學(xué)教學(xué),對學(xué)生學(xué)習(xí)情況有比較深入地了解,在解決具體問題的時候可以兼顧不同能力的學(xué)生,充分調(diào)動學(xué)生的積極性,在練習(xí)題的設(shè)計(jì)上要針對學(xué)生的差異采取分層設(shè)計(jì)的方法,著重加強(qiáng)對學(xué)生的雙基訓(xùn)練。
教學(xué)目標(biāo):
一 知識與技能:
1.理解一元二次方程的概念,能判斷一個方程是一元二次方程。
2.掌握一元二次方程的一般形式,正確認(rèn)識二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
二 過程與方法:
1.引導(dǎo)學(xué)生分析實(shí)際問題中的數(shù)量關(guān)系,組織學(xué)生討論,讓學(xué)生類比、抽象出一元二次方程的概念 。
2.培養(yǎng)獨(dú)立思考,合作交流學(xué),分析問題,解決問題的能力。
三 情感態(tài)度與價(jià)值觀:
1.培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識.
2.激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識.
3.讓學(xué)生體會數(shù)學(xué)來源于生活,又服務(wù)于生活的基本思想,從而意識到數(shù)學(xué)在生活中的作用。
教學(xué)重點(diǎn):一元二次方程的概念及一般形式,利用概念解決實(shí)際問題。
教學(xué)難點(diǎn):1.由實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程.
2.正確識別一般式中的“項(xiàng)”及“系數(shù)”.
3.一元二次方程的特點(diǎn),如何判斷一個方程是一元二次方程。
教學(xué)過程:
一、創(chuàng)設(shè)情境,引入新課
1.問題1:廣安區(qū)為增加農(nóng)民收入,需要調(diào)整農(nóng)作物種植結(jié)構(gòu),計(jì)劃無公害蔬菜的產(chǎn)量比翻一番,要實(shí)現(xiàn)這一目標(biāo),和20無公害蔬菜產(chǎn)量的年平均增長率是多少?(通過放幻燈片引入)
設(shè)無公害蔬菜產(chǎn)量的年平均增長率為x,20的產(chǎn)量為a(a≠0),翻一番的意思就是a變?yōu)?a,那么
(1)用代數(shù)式表示20的產(chǎn)量;
(2)年蔬菜的產(chǎn)量比年增加了2x,對嗎?為什么?你能用代數(shù)式表示出來嗎?
學(xué)生思考交流得出方程 a(1+x)2=2a
整理得,x2+2x-1=0…………①
2.通過幻燈片引入情境,提出問題:
問題2:廣安市政府在一塊寬200m、長320m的矩形廣場上,修筑寬相等的三條小路(兩條縱向、一條橫向,縱向與橫向垂直),把矩形空地分成大小一樣的6塊,建成小花壇,要使花壇的總面積為57000m2,問小路的寬應(yīng)為多少?
設(shè)小路的寬為x m,則橫向小路的面積如何表示?縱向的呢?重疊部分的面積是多少?小路所占的面積用x的代數(shù)式如何表示?
這個問題的相等關(guān)系是什么?
320×200-(320x+2×200x-2x2)=57000
整理得x2-36x+35=0
誰還能換一種思路考慮這個問題?
把6個小花壇拼起來是一個多長多寬的矩形,由此你會得出什么樣的方程?
(320-2x)(200-x)=57000
整理得x2-36x+35=0…………②
比較一下,哪種方法更巧妙?
3.通過幻燈片引入情景。問題3:廣安重百商場銷售某品牌服裝,若每件盈利50元,則每月可銷售100件。若每件降價(jià)1元,則每月可多賣出5件,若每月要盈利6000元,則商場決定每件服裝降價(jià)多少?
設(shè)每件降價(jià)x元,則現(xiàn)在的盈利為(50-x)元,降價(jià)后銷售量為(100+5x)件??闪蟹匠虨椋?50-x)(100+5x)=6000
教學(xué)目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點(diǎn)和難點(diǎn):
重點(diǎn):
1.一元二次方程的有關(guān)概念
2.會把一元二次方程化成一般形式
難點(diǎn):一元二次方程的含義.
教學(xué)過程設(shè)計(jì)
一、引入新課
引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?
分析:1.要解決這個問題,就要求出鐵片的長和寬。
2.這個問題用什么數(shù)學(xué)方法解決?(間接計(jì)算即列方程解應(yīng)用題。
3.讓學(xué)生自己列出方程( x(x十5)=150 )
深入引導(dǎo):方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?
二、新課
1.從上面的引例我們有這樣一個感覺:在解決日常生活的計(jì)算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實(shí)上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)
2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點(diǎn)來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數(shù)的次數(shù)是幾。如果方程未知數(shù)的次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)
3.強(qiáng)化一元二次方程的概念
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3:(2)x2=4
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
從以上4例讓學(xué)生明白判斷一個方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數(shù)的.次數(shù)是否是2。
4.一元二次方程概念的延伸
提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?
引導(dǎo)學(xué)生回顧一元二次方程的定義,分析一元二次方程項(xiàng)的情況,啟發(fā)學(xué)生運(yùn)用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項(xiàng)的名稱及a、b的系數(shù)名稱.
3).強(qiáng)調(diào):一元二次方程的一般形式中“=”的左邊最多三項(xiàng)、其中一次項(xiàng)、常數(shù)項(xiàng)可以不出現(xiàn)、但二次項(xiàng)必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
強(qiáng)化概念(課本p6)
1.說出下列一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):
(1)x2十3x十2=o (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
課堂小節(jié)
(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項(xiàng)、其中二次項(xiàng)、常數(shù)項(xiàng)可以不出現(xiàn)、但二次項(xiàng)必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說出隨便一個一元二次方程中一二次項(xiàng)、一次項(xiàng)、常數(shù)項(xiàng):二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù).
教材分析
1.本節(jié)在引言中的方程基礎(chǔ)上,首先通過兩個實(shí)際問題,進(jìn)一步引出一元二次方程的具體例子,然后引導(dǎo)學(xué)生觀察出它們的共同點(diǎn),得出一元二次方程的定義。
2.書中的定義是以未知數(shù)的個數(shù)和次數(shù)為標(biāo)準(zhǔn),用文字的形式給出的。一元二次方程都可以整理為ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。
3、本節(jié)始終都有列方程的內(nèi)容,這樣安排一方面是分散列方程這一教學(xué)難點(diǎn),化整為零地培養(yǎng)由實(shí)際問題抽象出方程模型的能力;另一方面是為由一些具體的方程歸納出一元二次方程的概念。
學(xué)情分析
1、通過課堂練習(xí),大部分學(xué)生對概念基本理解,能夠找出各項(xiàng)系數(shù),但有少數(shù)學(xué)困生對于系數(shù)符號沒有掌握。
2、部分學(xué)生由于基礎(chǔ)較薄弱,用一元二次方程解決實(shí)際問題有一定的難度,解決這問題要以多練為主。
3、學(xué)生認(rèn)知障礙點(diǎn):一元二次方程與不等式和整式的綜合運(yùn)用能力有待提高。
教學(xué)目標(biāo)
1、從實(shí)際問題引出一元二次方程,使學(xué)生進(jìn)一步體會方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個有效數(shù)學(xué)模型,培養(yǎng)學(xué)生分析問題和解決問題的能力及用數(shù)學(xué)的意識。
2、使學(xué)生正確理解一元二次方程的概念,掌握一元二次方程的一般形式,并能將一元二次方程轉(zhuǎn)化為一般形式,正確識別二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng)。
3、通過概念教學(xué),培養(yǎng)學(xué)生的觀察、類比、歸納能力,同時通過變式練習(xí),使學(xué)生對概念理解具備完整性和深刻性。
教學(xué)重點(diǎn)和難點(diǎn)
1、重點(diǎn):概念的形成及一般形式。
2、難點(diǎn):從實(shí)際問題引出一元二次方程;正確識別一般形式中的“項(xiàng)”及“系數(shù)”。
?教學(xué)目的】? 精選學(xué)生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的'原因和糾正錯誤的方法,使學(xué)生在解題時少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。
?課前練習(xí)】
1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時,方程為一元一次方程;當(dāng) a_____時,方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時,方程有兩個相等的實(shí)數(shù)根,當(dāng)△_______時,方程有兩個不相等的實(shí)數(shù)根,當(dāng)△________時,方程沒有實(shí)數(shù)根。
?典型例題】
例1?? 下列方程中兩實(shí)數(shù)根之和為2的方程是
(a)?? x2+2x+3=0???? (b) x2-2x+3=0??? (c)? x2-2x-3=0????? (d)? x2+2x+3=0
錯答: b
正解: c
錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選b,又考慮到方程有實(shí)數(shù)根,故由△可知,方程b無實(shí)數(shù)根,方程c合適。
例2 ??若關(guān)于x的方程x2+2(k+2)x+k2=0? 兩個實(shí)數(shù)根之和大于-4,則k的取值范圍是(???? )
(a)?? k>-1??? ?(b)? k<0?? ?(c) -1< k<0??? (d) -1≤k<0
錯解 :b
正解:d
錯因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0
例3(2000廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2
教學(xué)目標(biāo)
知識與技能目標(biāo)
1、構(gòu)建本章的部分知識框圖。
2、復(fù)習(xí)一元二次方程的概念、解法。
過程與方法
1、通過對本章方程解法的復(fù)習(xí),進(jìn)一步提高學(xué)生的運(yùn)算能力。
2、在解一元二次方程的過程中體會轉(zhuǎn)化等數(shù)學(xué)思想。
情感、態(tài)度與價(jià)值觀
通過師生共同的活動,使學(xué)生在交流和反思的過程中建立本章的知識體系,從而體驗(yàn)學(xué)習(xí)數(shù)學(xué)的成就感.
教學(xué)重點(diǎn)
1、一元二次方程的概念
2、一元二次方程的四種解法:直接開平方法、配方法、公式法、因式分解法;
教學(xué)難點(diǎn)
解法的靈活選擇;例4和例5的解法。
教學(xué)過程
一、創(chuàng)設(shè)情境
導(dǎo)入新課
問題:本章中,我們有哪些收獲?(教師點(diǎn)撥引導(dǎo)學(xué)生構(gòu)建本章部分知識框圖)
二、師生互動
共同探究
1、復(fù)習(xí)概念
例1
例2
2、四種解法
(1)
解法及其關(guān)系
(2)
根的形式
x1=3
x2=4
(3)熟悉解法
例3用四種解法分別解此方程
(4)方法優(yōu)選
3、方法補(bǔ)充
例4
4、解法糾錯
例5
解關(guān)于x的方程
錯誤解法
正確解法
三、小結(jié)反思
提煉思想
我們有哪些收獲?解方程的思想方法是什么?
四、布置作業(yè)
鞏固提高
一、引導(dǎo)學(xué)生觀察、類比、聯(lián)想已學(xué)的一元一次方程、二元一次方程,歸納、總結(jié)出一元二次方程,讓學(xué)生充分感受知識的產(chǎn)生和發(fā)展過程,使學(xué)生始終處于積極的思維狀態(tài)之中,使新概念的得出覺得意外,讓學(xué)生跳一跳就可以摘到桃子。
二、合理選材,優(yōu)化教學(xué),在教學(xué)中,忠實(shí)于教材,要研究的基礎(chǔ)上使用教材。教學(xué)方法合理化,不拘于形式,通過一系列的活動來展開教學(xué),發(fā)展了學(xué)生的思維能力,增強(qiáng)了學(xué)生思考的習(xí)慣,增強(qiáng)了學(xué)生運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的能力。
三、整節(jié)課的設(shè)計(jì)以落實(shí)雙基為起點(diǎn),培養(yǎng)學(xué)生獨(dú)立思考的能力,重視知識和產(chǎn)生過程,關(guān)注人的發(fā)展。無論是教學(xué)環(huán)節(jié)設(shè)計(jì),還是作業(yè)的布置上,我注意分層次教學(xué),讓每一個學(xué)生都得到不同的發(fā)展
四、為了真正做到有效的合作學(xué)習(xí),我在活動中大膽地讓學(xué)生自主完成。先讓學(xué)生把問題提出來,然后讓學(xué)生帶著問題去討論,這樣學(xué)生在討論時就有目的,就會事半功倍。也讓不同層次的學(xué)生得到不同的發(fā)展。也符合新課程的教學(xué)理念。
不足之處:引入方面有待加強(qiáng),不夠激發(fā)學(xué)生的學(xué)習(xí)興趣;板書還有待加強(qiáng),應(yīng)給學(xué)生做出示范;給學(xué)生思考的時間還不夠。
[一元二次方程的概念教學(xué)反思]
喜歡《一元二次方程課件》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼師資料,同時,yjs21.com編輯還為您精選準(zhǔn)備了一元二次方程課件專題,希望您能喜歡!
相關(guān)推薦
敬讀閱讀幼兒教師教育網(wǎng)的編輯整理的解一元一次方程教案。教案是老師上課之前需要備好的課件,因此老師會仔細(xì)規(guī)劃每份教案課件重點(diǎn)難點(diǎn)。寫好教案,才能營造完整課堂教學(xué)。歡迎大家借鑒與參考,希望對大家有所幫助!...
你近期在尋找優(yōu)質(zhì)的教學(xué)教案嗎?舉世不師,故道益離,給學(xué)生上課的時候,教案的作用性就顯現(xiàn)出來了。教案是教師保證教學(xué)成功的根本條件,請你閱讀幼兒教師教育網(wǎng)輯為你編輯整理的《一元二次不等式說課稿》,供大家參考借鑒,希望可以幫助到有需要的朋友!...
請閱讀由幼兒教師教育網(wǎng)的編輯為你編輯的解方程課件教案。每個老師上課需要準(zhǔn)備的東西是教案課件,因此在寫的時候就不要草草了事了。寫好教案課件,也能讓老師及時去總結(jié)和反思教學(xué)情況。本網(wǎng)頁內(nèi)容僅為您提供參考!...
最新更新