91啦丨国产丨蚪窝人妻首页,国产一区不卡,日本欧美大码aⅴ在线播放,西西人体444WwW高清大胆

幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

高一函數(shù)課件

發(fā)布時(shí)間:2023-07-03

高一函數(shù)課件。

這篇“高一函數(shù)課件”是幼兒教師教育網(wǎng)小編精心制作的,希望您能夠喜歡它,并從中獲得幫助。教案和課件是每位教師為上課準(zhǔn)備的必要材料,但它們并非隨隨便便就能寫好。只有寫好教案,才能打造出完整的課堂教學(xué)。

高一函數(shù)課件【篇1】

一、說教材

(一)地位與重要性

函數(shù)的最值是《高中數(shù)學(xué)》一年級第一學(xué)期的內(nèi)容,是函數(shù)基本性質(zhì)的重要部分。在實(shí)際問題的解決過程中,建立了變量間的函數(shù)關(guān)系后,求最值培養(yǎng)了學(xué)生運(yùn)用基礎(chǔ)理論研究具體問題的能力,這也是學(xué)習(xí)數(shù)學(xué)的目的之一。函數(shù)最值的教學(xué)在培養(yǎng)學(xué)生數(shù)形結(jié)合、化歸的數(shù)學(xué)思想同時(shí)也可以使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)思維的學(xué)習(xí)習(xí)慣。函數(shù)的思想是一種重要的數(shù)學(xué)思想,它體現(xiàn)了運(yùn)動變化和對立統(tǒng)一的觀點(diǎn),本節(jié)課對初高中知識的銜接起到了承上啟下的作用。函數(shù)的最值問題與不等式、方程、參數(shù)范圍的探求及解析幾何等知識綜合在一起往往能編擬綜合性較強(qiáng)的新型題目,可以綜合考查學(xué)生應(yīng)用函數(shù)知識分析解決問題的能力,從而成為高考的高檔解答題,是高考測試的熱點(diǎn)之一。

(二)教學(xué)目標(biāo)

知識與能力目標(biāo):掌握求二次函數(shù)最值的常用方法——配方法,培養(yǎng)學(xué)生數(shù)形結(jié)合、化歸的數(shù)學(xué)思想和運(yùn)用基礎(chǔ)理論研究解決具體問題的能力。

情感目標(biāo):經(jīng)歷和體驗(yàn)數(shù)學(xué)活動的過程以及數(shù)學(xué)在現(xiàn)實(shí)生活中的作用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)知識的積極性,樹立學(xué)好數(shù)學(xué)的信心。

過程目標(biāo):通過課堂學(xué)習(xí)活動培養(yǎng)學(xué)生相互間的合作交流,且在相互交流的過程中養(yǎng)成學(xué)生表述、抽象、總結(jié)的思維習(xí)慣,進(jìn)而獲得成功的體驗(yàn)。

科研目標(biāo):在教師指導(dǎo)下學(xué)生經(jīng)歷和體驗(yàn)探究過程的方法。

(三)教學(xué)重難點(diǎn)

重點(diǎn):配方法、數(shù)形結(jié)合求二次函數(shù)的最值。

難點(diǎn):二次函數(shù)在閉區(qū)間上的最值。

二、說教法與學(xué)法

在初中學(xué)生已經(jīng)學(xué)習(xí)過二次函數(shù)的知識,根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,本節(jié)課主要采用探究式教學(xué)法和講練結(jié)合法進(jìn)行教學(xué)。教學(xué)過程也是一個(gè)學(xué)生主動建構(gòu)的過程,教師不能無視學(xué)生已有的經(jīng)驗(yàn),企圖從外部將新知識強(qiáng)行裝入學(xué)生的頭腦,而是要把學(xué)生現(xiàn)有的知識經(jīng)驗(yàn)作為新知識的生長點(diǎn),引導(dǎo)學(xué)生從原有的知識經(jīng)驗(yàn)中“生長”及發(fā)現(xiàn)新的知識經(jīng)驗(yàn)。在本堂課學(xué)習(xí)中,學(xué)生發(fā)揮主體作用,主動地思考探究求解最值的最優(yōu)策略,并歸納出自己的解題方法,將知識主動納入已建構(gòu)好的知識體系,真正做到“學(xué)會學(xué)習(xí)”。

三、說教學(xué)過程

(一)課題引入

環(huán)節(jié)

教學(xué)過程

設(shè)計(jì)說明

課題講解

例:動物園要建造一面靠墻的2間面積相同的長方形熊貓居室,如果可供建造圍墻的材料長是30米,那么寬為多少米時(shí)才能使所建造的熊貓居室面積最大?熊貓居室的最大面積是多少平方米?

學(xué)生通過此例感受到在實(shí)際問題中需要解決函數(shù)的最值問題,從而引發(fā)學(xué)習(xí)本節(jié)內(nèi)容的興趣。

教學(xué)手段:用PPT展示題目

教師引導(dǎo)學(xué)生討論解答,并個(gè)別答疑、點(diǎn)撥,收集學(xué)生的解法,挑出若干答案在實(shí)物投影儀上進(jìn)行展示,并進(jìn)行點(diǎn)評。

學(xué)生的解法主要為函數(shù)最值法和利用基本不等式求最值,由學(xué)生評價(jià)兩種方法,為閉區(qū)間上二次函數(shù)的最值教學(xué)打下伏筆

教學(xué)手段:實(shí)物投影儀

(二)新知教學(xué)

環(huán)節(jié)

教學(xué)過程

設(shè)計(jì)說明

課題講解

一、函數(shù)最大值和最小值的概念

通過引例最值的求解,引導(dǎo)學(xué)生闡述函數(shù)最大值和最小值的概念。

學(xué)生口述師板書。

一般地,設(shè)函數(shù)在處的函數(shù)值是.如果對于定義域內(nèi)任意,不等式都成立,那么叫做函數(shù)的最小值,記作;如果對于定義域內(nèi)任意,不等式都成立,那么叫做函數(shù)的最大值記作。

二、例題講練

例1、求二次函數(shù)的最大值或者最小值:

師生共同完成一例,高一學(xué)生要養(yǎng)成規(guī)范的書寫格式和習(xí)慣,其余題目請學(xué)生板演。

學(xué)生根據(jù)已有的能力和經(jīng)驗(yàn),動手得出答案,教師點(diǎn)評。提醒注意當(dāng)取何值時(shí),函數(shù)取到最值。

培養(yǎng)學(xué)生闡述、分析、理解概念的能力,引入最大值概念的過程是遵循由已知去認(rèn)識未知的認(rèn)識規(guī)律進(jìn)行設(shè)計(jì)的,現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過程中必須注意在學(xué)生已有知識結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識結(jié)構(gòu)。讓學(xué)生從求實(shí)際問題的最大值入手,由熟悉的二次函數(shù)圖象的頂點(diǎn)所具有的特點(diǎn)出發(fā),得到求二次函數(shù)最大值(最小值)的方法。

突出學(xué)生的主體地位,發(fā)揮教師的主導(dǎo)作用,培養(yǎng)思維的嚴(yán)謹(jǐn)性以及轉(zhuǎn)化能力,通過區(qū)間的變化讓學(xué)生充分感受到二次函數(shù)的最值的求解要討論對稱軸與所給區(qū)間的關(guān)系。

教學(xué)方式:講練結(jié)合

例2、在的條件下,求函數(shù)的最大值和最小值。

教師引導(dǎo)學(xué)生逐步深入思考:

1、定義域與函數(shù)最值是什么關(guān)系?

2、轉(zhuǎn)化后要研究的函數(shù)是什么?

教學(xué)方式:學(xué)生自主探究

高一函數(shù)課件【篇2】

一考綱要求。

1.利用計(jì)算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實(shí)例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。

2.搜集一些社會生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實(shí)例,了解函數(shù)模型的廣泛應(yīng)用。

二.高考趨勢。

函數(shù)知識應(yīng)用十分廣泛,利用函數(shù)知識解應(yīng)用問題是數(shù)學(xué)應(yīng)用題的主要類型之一,也是高考考查的重點(diǎn)內(nèi)容。

三.要點(diǎn)回顧

解應(yīng)用題,首先應(yīng)通過審題,分析原型結(jié)構(gòu),深刻認(rèn)識問題的實(shí)際背景,確定主要矛盾,提出必要的假設(shè),將應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題求解;然后,經(jīng)過檢驗(yàn),求出應(yīng)用問題的解。其解題步驟如下:1.審題2.建模(列數(shù)學(xué)關(guān)系式)3.合理求解純數(shù)學(xué)問題。4.解釋并回答實(shí)際問題。

四.基礎(chǔ)訓(xùn)練。

1.在一定的范圍內(nèi),某種產(chǎn)品的購買量噸與單價(jià)元之間滿足一次函數(shù)關(guān)系,如果購買1000噸,每噸為800元,購買2000噸,每噸700元,那么客戶購買400噸,單價(jià)應(yīng)該是

2.根據(jù)市場調(diào)查,某商品在最近10天內(nèi)的價(jià)格與時(shí)間滿足關(guān)系銷售量與時(shí)間滿足關(guān)系則這種商品的日銷售額的值為.

3.某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向公司交元的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元(9時(shí),一年的銷售量為萬件。則分公司一年的利潤L元與每件產(chǎn)品的售價(jià)的函數(shù)關(guān)系式為.

4.有一批材料可以建成200的圍墻,如果用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個(gè)面積相等的矩形(如圖所示),則圍成矩形場地面積為(圍墻厚度不計(jì))。

5.某建筑商場國慶期間搞促銷活動,規(guī)定:顧客購物總金額不超過800元,不享受任何折扣,如果顧客購物總金額超過800元,則超過800元部分享受一定的折扣優(yōu)惠,按右表折扣分別累計(jì)計(jì)算。

可以享受折扣優(yōu)惠金額折扣率不超過500元的部分5%超過500元的部分10%某人在此商場購物總金額為元,可以獲得的折扣金額為元,則關(guān)于的解析式為;若元,則此人購物總金額為元。

6.在邊長為4的正方形ABCD的邊上有一點(diǎn)p沿著折線BCDA,由B點(diǎn)(起點(diǎn))向A點(diǎn)(終點(diǎn))移動,設(shè)p點(diǎn)移動的路程為,的面積與點(diǎn)p移動的路程間的函數(shù)關(guān)系式為

五.例題精講。

例1.某村計(jì)劃建造一個(gè)室內(nèi)面積為800的矩形蔬菜溫室,在溫室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1寬的通道,沿前側(cè)內(nèi)墻保留3寬的空地,當(dāng)矩形溫室的邊長各為多少時(shí),蔬菜的種植面積?種植面積是多少?

例2.某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時(shí),可全部租出當(dāng)每輛車的月租金每增加50元時(shí),未租出車將增加一輛,租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元,兩者都由租賃公司支付。

1當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?

2當(dāng)每輛車的月租金定為多少元時(shí),公司的月收益?月收益是多少?

例3.某城市現(xiàn)有人口100萬人,如果每年自然增長率為1.2﹪,試解答下面問題

1寫出城市人口總數(shù)(萬人)與年份(年)的函數(shù)關(guān)系式

2計(jì)算xx以后該城市人口總數(shù)(精確到0.1萬人)

3計(jì)算大約多少年以后該城市人口將達(dá)到120萬人(精確到1年)

六.鞏固練習(xí):.

1.鐵路機(jī)車運(yùn)行1小時(shí)所需的成本由兩部分組成:固定部分元,變動部分(元)與運(yùn)行速度(千米/小時(shí))的平方成正比,比例系數(shù)為,如果機(jī)車勻速從甲站開往乙站,甲,乙兩站間的距離為500千米,則機(jī)車從甲站運(yùn)行到乙站的總成本與機(jī)車的速度之間的函數(shù)關(guān)系為

2.某公司有60萬元資金,計(jì)劃投資甲,乙兩個(gè)項(xiàng)目,按要求,對項(xiàng)目甲的投資不小于對項(xiàng)目乙投資的倍,且對每個(gè)項(xiàng)目的投資不少于5萬元,對項(xiàng)目甲投資1萬元可獲得0.4萬元的利潤,對項(xiàng)目乙投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃后,在這兩個(gè)項(xiàng)目上共可獲得的利潤為

3.將進(jìn)貨單價(jià)為80元的商品按90元一個(gè)出售時(shí),能賣出400個(gè),已知該商品每個(gè)上漲1元,其銷售量就減少20個(gè),為獲得利潤,售價(jià)應(yīng)定為

4.某地每年消耗木材約20萬立方米,沒立方米木料價(jià)格為240元,為了減少木材消耗,決定按木料價(jià)格的%征收木材稅,這樣每年木材消耗量減少萬立方米,為了既減少木材消耗又保證稅金收入每年不少于90萬元,則的取值范圍為

5.已知鐳經(jīng)過100年剩留原來質(zhì)量的95.76%,設(shè)質(zhì)量為1的鐳經(jīng)過年后的剩留質(zhì)量為,則與之間的函數(shù)關(guān)系為

6.某公司一年共購買某種貨物400噸,每次購買噸,運(yùn)費(fèi)為4萬元/噸,一年總儲存費(fèi)用4萬元,要使一年的總運(yùn)費(fèi)與總儲存費(fèi)用之和最小,則=

7.用總長為14.8的鋼條做一個(gè)長方體容器的框架,如果所做容器有一邊比另一邊長0.5,則它的容積為

8.某工廠生產(chǎn)某種產(chǎn)品,已知該產(chǎn)品的月生產(chǎn)量(噸)與每噸產(chǎn)品的價(jià)格(元/噸)之間的關(guān)系式為:,且生產(chǎn)噸的成本為(元),問該產(chǎn)品每月生產(chǎn)噸才能使利潤達(dá)到,利潤是萬元

9.有甲,乙兩種產(chǎn)品經(jīng)營銷售這兩種商品所獲得的利潤依次是和(萬元)它們與投入的資金(萬元)的關(guān)系,有經(jīng)驗(yàn)公式,。今有3萬元資金投入經(jīng)營甲、乙兩種商品,為了獲得利潤,對甲、乙兩種商品的資金投入分別應(yīng)是多少?最多能獲得多大的利潤?

高一函數(shù)課件【篇3】

教學(xué)目標(biāo):

掌握二倍角的正弦、余弦、正切公式,能用上述公式進(jìn)行簡單的求值、化簡、恒等證明;引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,讓學(xué)生體會化歸這一基本數(shù)學(xué)思想在發(fā)現(xiàn)中所起的作用,培養(yǎng)學(xué)生的創(chuàng)新意識.

教學(xué)重點(diǎn):

二倍角公式的推導(dǎo)及簡單應(yīng)用.

教學(xué)難點(diǎn):

理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù).

教學(xué)過程:

Ⅰ.課題導(dǎo)入

前一段時(shí)間,我們共同探討了和角公式、差角公式,今天,我們繼續(xù)探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當(dāng)兩角相等時(shí),兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請同學(xué)們試推.

先回憶和角公式

sin(α+β)=sinαcosβ+cosαsinβ

當(dāng)α=β時(shí),sin(α+β)=sin2α=2sinαcosα

即:sin2α=2sinαcosα(S2α)

cos(α+β)=cosαcosβ-sinαsinβ

當(dāng)α=β時(shí)cos(α+β)=cos2α=cos2α-sin2α

即:cos2α=cos2α-sin2α(C2α)

tan(α+β)=tanα+tanβ1-tanαtanβ

當(dāng)α=β時(shí),tan2α=2tanα1-tan2α

Ⅱ.講授新課

同學(xué)們推證所得結(jié)果是否與此結(jié)果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α

同學(xué)們是否也考慮到了呢?

另外運(yùn)用這些公式要注意如下幾點(diǎn):

(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當(dāng)α≠π2+kπ及α≠π4+kπ2(k∈Z)時(shí)才成立,否則不成立(因?yàn)楫?dāng)α=π2+kπ,k∈Z時(shí),tanα的值不存在;當(dāng)α=π4+kπ2,k∈Z時(shí)tan2α的值不存在).

當(dāng)α=π2+kπ(k∈Z)時(shí),雖然tanα的值不存在,但tan2α的值是存在的,這時(shí)求tan2α的值可利用誘導(dǎo)公式:

即:tan2α=tan2(π2+kπ)=tan(π+2kπ)=tanπ=0

(2)在一般情況下,sin2α≠2sinα

例如:sinπ3=32≠2sinπ6=1;只有在一些特殊的情況下,才有可能成立

高一函數(shù)課件【篇4】

1.2解三角形應(yīng)用舉例第二課時(shí)

一、教學(xué)目標(biāo)

1、能夠運(yùn)用正弦定理、余弦定理等知識和方法解決一些有關(guān)底部不可到達(dá)的物體高度測量的問題

2、鞏固深化解三角形實(shí)際問題的一般方法,養(yǎng)成良好的研究、探索習(xí)慣。

3、進(jìn)一步培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的意識及觀察、歸納、類比、概括的能力

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):結(jié)合實(shí)際測量工具,解決生活中的測量高度問題

難點(diǎn):能觀察較復(fù)雜的圖形,從中找到解決問題的關(guān)鍵條件

三、教學(xué)過程

Ⅰ.課題導(dǎo)入

提問:現(xiàn)實(shí)生活中,人們是怎樣測量底部不可到達(dá)的建筑物高度呢?又怎樣在水平飛行的飛機(jī)上測量飛機(jī)下方山頂?shù)暮0胃叨饶??今天我們就來共同探討這方面的問題

Ⅱ.講授新課

[范例講解]

例1、AB是底部B不可到達(dá)的一個(gè)建筑物,A為建筑物的最高點(diǎn),設(shè)計(jì)一種測量建筑物高度AB的方法。

分析:求AB長的關(guān)鍵是先求AE,在ACE中,如能求出C點(diǎn)到建筑物頂部A的距離CA,再測出由C點(diǎn)觀察A的仰角,就可以計(jì)算出AE的長。

解:選擇一條水平基線HG,使H、G、B三點(diǎn)在同一條直線上。由在H、G兩點(diǎn)用測角儀器測得A的仰角分別是、,CD=a,測角儀器的高是h,那么,在ACD中,根據(jù)正弦定理可得

AC=AB=AE+h=AC+h=+h

例2、如圖,在山頂鐵塔上B處測得地面上一點(diǎn)A的俯角=54,在塔底C處測得A處的俯角=50。已知鐵塔BC部分的高為27.3m,求出山高CD(精確到1m)

師:根據(jù)已知條件,大家能設(shè)計(jì)出解題方案嗎?

若在ABD中求CD,則關(guān)鍵需要求出哪條邊呢?

生:需求出BD邊。

師:那如何求BD邊呢?

生:可首先求出AB邊,再根據(jù)BAD=求得。

解:在ABC中,BCA=90+,ABC=90-,

BAC=-,BAD=.根據(jù)正弦定理,=

所以AB==在RtABD中,得BD=ABsinBAD=

將測量數(shù)據(jù)代入上式,得BD==≈177(m)

CD=BD-BC≈177-27.3=150(m)

答:山的高度約為150米.

思考:有沒有別的解法呢?若在ACD中求CD,可先求出AC。思考如何求出AC?

例3、如圖,一輛汽車在一條水平的公路上向正東行駛,到A處時(shí)測得公路南側(cè)遠(yuǎn)處一山頂D在東偏南15的方向上,行駛5km后到達(dá)B處,測得此山頂在東偏南25的方向上,仰角為8,求此山的高度CD.

思考1:欲求出CD,大家思考在哪個(gè)三角形中研究比較適合呢?(在BCD中)

思考2:在BCD中,已知BD或BC都可求出CD,根據(jù)條件,易計(jì)算出哪條邊的長?(BC邊)

解:在ABC中,A=15,C=25-15=10,根據(jù)正弦定理,

=,BC=≈7.4524(km)CD=BCtanDBC≈BCtan8≈1047(m)

答:山的高度約為1047米

Ⅲ.課堂練習(xí):課本第17頁練習(xí)第1、2、3題

Ⅳ.課時(shí)小結(jié)

利用正弦定理和余弦定理來解題時(shí),要學(xué)會審題及根據(jù)題意畫方位圖,要懂得從所給的背景資料中進(jìn)行加工、抽取主要因素,進(jìn)行適當(dāng)?shù)暮喕?/p>

Ⅴ.課后作業(yè)

作業(yè):《習(xí)案》作業(yè)五

高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計(jì)

高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計(jì)

教學(xué)目標(biāo)

1.理解函數(shù)的概念,了解函數(shù)的三種表示法,會求函數(shù)的定義域.

(1)了解函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.能理解函數(shù)是由定義域,值域,對應(yīng)法則三要素構(gòu)成的整體.

(2)能正確認(rèn)識和使用函數(shù)的三種表示法:解析法,列表法,和圖象法.了解每種方法的優(yōu)點(diǎn).

(3)能正確使用“區(qū)間”及相關(guān)符號,能正確求解各類函數(shù)的定義域.

2.通過函數(shù)概念的學(xué)習(xí),使學(xué)生在符號表示,運(yùn)算等方面的能力有所提高.

學(xué)過什么函數(shù)?

(要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子)

學(xué)生舉出如等,待學(xué)生說完定義后教師打出投影片,給出定義之后教師也舉一個(gè)例子,問學(xué)生.

提問1.是函數(shù)嗎?

(由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是函數(shù),理由是沒有兩個(gè)變量,也有的認(rèn)為是函數(shù),理由是可以可做.)

教師由此指出我們爭論的焦點(diǎn),其實(shí)就是函數(shù)定義的不完善的地方,這也正是我們今天研究函數(shù)定義的必要性,新的定義將在與原定義不相違背的基礎(chǔ)上從更高的觀點(diǎn),將它完善與深化.

二、新課

現(xiàn)在請同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)

提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.

學(xué)生的回答往往是把書上的定義念一遍,教師可以板書的形式寫出定義,但還要引導(dǎo)形式發(fā)現(xiàn)定義的本質(zhì).

(板書)2.2函數(shù)

一、函數(shù)的概念

高一函數(shù)課件【篇5】

高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)目標(biāo)

1.使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì).

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識指數(shù)函數(shù)的性質(zhì).

(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如

的圖象.

2.通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法.

3.通過對指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.

高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)建議

高一數(shù)學(xué)指數(shù)函數(shù)教案:教材分析

(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.

(2)本節(jié)的教學(xué)重點(diǎn)是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點(diǎn)是對底數(shù)

時(shí),函數(shù)值變化情況的區(qū)分.

(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.

高一數(shù)學(xué)指數(shù)函數(shù)教案:教法建議

(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是

的樣子,不能有一點(diǎn)差異,諸如

,

等都不是指數(shù)函數(shù).

(2)對底數(shù)

的限制條件的理解與認(rèn)識也是認(rèn)識指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷@個(gè)條件的認(rèn)識不僅關(guān)系到對指數(shù)函數(shù)的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來.

關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.

高一函數(shù)課件【篇6】

說教學(xué)目標(biāo)

熟練地掌握二次函數(shù)的最值及其求法。

說教學(xué)重點(diǎn)

二次函數(shù)的的最值及其求法。

說教學(xué)難點(diǎn)

二次函數(shù)的最值及其求法。

說教學(xué)過程

一、引入

二次函數(shù)的最值:

二、例題分析:

例1:求二次函數(shù)的最大值以及取得最大值時(shí)的值。

變題1:

變題2:求函數(shù)的最大值。

變題3:求函數(shù)的最大值。

例2:已知的最大值為3,最小值為2,求的取值范圍。

例3:若,是二次方程的兩個(gè)實(shí)數(shù)根,求的最小值。

三、隨堂練習(xí):

1、若函數(shù)在上有最小值,最大值2,若,則=________,=________。

2、已知,是關(guān)于的一元二次方程的兩實(shí)數(shù)根,則的最小值是()

A、0 B、1 C、-1 D、2

3、求函數(shù)在區(qū)間上的最大值。

四、回顧小結(jié)

本節(jié)課了以下內(nèi)容:

1、二次函數(shù)的的最值及其求法。

課后作業(yè)

班級:()班姓名__________

一、基礎(chǔ)題:

1、函數(shù)

A、有最大值6 B、有最小值6 C、有最大值10 D、有最大值2

2、函數(shù)的最大值是4,且當(dāng)=2時(shí),=5,則=______,=_______。

二、提高題:

3、試求關(guān)于的函數(shù)在上的最大值,高三。

4、已知函數(shù)當(dāng)時(shí),取最大值為2,求實(shí)數(shù)的值。

5、已知是方程的兩實(shí)根,求的最大值和最小值。

三、題:

已知函數(shù),其中,求該函數(shù)的最大值與最小值,并求出函數(shù)取最大值和最小值時(shí)所對應(yīng)的自變量的值。

高一函數(shù)課件【篇7】

一、學(xué)習(xí)目標(biāo)與自我評估

1掌握利用單位圓的幾何方法作函數(shù)的圖象

2結(jié)合的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期

3會用代數(shù)方法求等函數(shù)的周期

4理解周期性的幾何意義

二、學(xué)習(xí)重點(diǎn)與難點(diǎn)

“周期函數(shù)的概念”,周期的求解。

三、學(xué)法指導(dǎo)

1、是周期函數(shù)是指對定義域中所有都有

,即應(yīng)是恒等式。

2、周期函數(shù)一定會有周期,但不一定存在最小正周期。

四、學(xué)習(xí)活動與意義建構(gòu)

五、重點(diǎn)與難點(diǎn)探究

例1、若鐘擺的高度與時(shí)間之間的函數(shù)關(guān)系如圖所示

(1)求該函數(shù)的周期;

(2)求時(shí)鐘擺的高度。

例2、求下列函數(shù)的周期。

(1)(2)

總結(jié):(1)函數(shù)(其中均為常數(shù),且

的周期T=。

(2)函數(shù)(其中均為常數(shù),且

的周期T=。

例3、求證:的周期為。

例4、(1)研究和函數(shù)的圖象,分析其周期性。

(2)求證:的周期為(其中均為常數(shù),

總結(jié):函數(shù)(其中均為常數(shù),且

的周期T=。

例5、(1)求的周期。

(2)已知滿足,求證:是周期函數(shù)

課后思考:能否利用單位圓作函數(shù)的圖象。

六、作業(yè):

七、自主體驗(yàn)與運(yùn)用

1、函數(shù)的周期為()

A、B、C、D、

2、函數(shù)的最小正周期是()

A、B、C、D、

3、函數(shù)的最小正周期是()

A、B、C、D、

4、函數(shù)的周期是()

A、B、C、D、

5、設(shè)是定義域?yàn)镽,最小正周期為的函數(shù),

若,則的值等于()

A、1B、C、0D、

6、函數(shù)的最小正周期是,則

7、已知函數(shù)的最小正周期不大于2,則正整數(shù)

的最小值是

8、求函數(shù)的最小正周期為T,且,則正整數(shù)

的值是

9、已知函數(shù)是周期為6的奇函數(shù),且則

10、若函數(shù),則

11、用周期的定義分析的周期。

12、已知函數(shù),如果使的周期在內(nèi),求

正整數(shù)的值

13、一機(jī)械振動中,某質(zhì)子離開平衡位置的位移與時(shí)間之間的

函數(shù)關(guān)系如圖所示:

(1)求該函數(shù)的周期;

(2)求時(shí),該質(zhì)點(diǎn)離開平衡位置的位移。

14、已知是定義在R上的函數(shù),且對任意有

成立,

(1)證明:是周期函數(shù);

(2)若求的值。

高一函數(shù)課件【篇8】

函數(shù)思想在解題中的應(yīng)用主要表現(xiàn)在兩個(gè)方面:一是借助有關(guān)初等函數(shù)的性質(zhì),解有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù),把所研究的問題轉(zhuǎn)化為討論函數(shù)的有關(guān)性質(zhì),達(dá)到化難為易,化繁為簡的目的。函數(shù)與方程的思想是中學(xué)數(shù)學(xué)的基本思想,也是歷年高考的重點(diǎn)。

1.函數(shù)的思想,是用運(yùn)動和變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決。

2.方程的思想,就是分析數(shù)學(xué)問題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過解方程或方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決。方程思想是動中求靜,研究運(yùn)動中的等量關(guān)系;

3.函數(shù)方程思想的幾種重要形式

(1)函數(shù)和方程是密切相關(guān)的,對于函數(shù)y=f(x),當(dāng)y=0時(shí),就轉(zhuǎn)化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。

(2)函數(shù)與不等式也可以相互轉(zhuǎn)化,對于函數(shù)y=f(x),當(dāng)y>0時(shí),就轉(zhuǎn)化為不等式f(x)>0,借助于函數(shù)圖像與性質(zhì)解決有關(guān)問題,而研究函數(shù)的性質(zhì),也離不開解不等式;

(3)數(shù)列的通項(xiàng)或前n項(xiàng)和是自變量為正整數(shù)的函數(shù),用函數(shù)的觀點(diǎn)處理數(shù)列問題十分重要;

(4)函數(shù)f(x)=(1+x)^n(n∈N*)與二項(xiàng)式定理是密切相關(guān)的,利用這個(gè)函數(shù)用賦值法和比較系數(shù)法可以解決很多二項(xiàng)式定理的問題;

(5)解析幾何中的許多問題,例如直線和二次曲線的位置關(guān)系問題,需要通過解二元方程組才能解決,涉及到二次方程與二次函數(shù)的有關(guān)理論;

(6)立體幾何中有關(guān)線段、角、面積、體積的計(jì)算,經(jīng)常需要運(yùn)用布列方程或建立函數(shù)表達(dá)式的方法加以解決。

高一函數(shù)課件【篇9】

(一)通過具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗(yàn)數(shù)學(xué)概念的建立過程,培養(yǎng)其抽象概括能力.

(二)理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡單函數(shù)的奇偶性.

(三)在經(jīng)歷概念形成的過程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗(yàn)數(shù)學(xué)既是抽象的又是具體的.

這節(jié)內(nèi)容學(xué)生在初中雖沒學(xué)過,但已經(jīng)學(xué)習(xí)過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax■,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,便于學(xué)生理解.在引入概念時(shí)始終結(jié)合具體函數(shù)的圖像,增強(qiáng)直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時(shí)為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對于概念可從代數(shù)特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點(diǎn)對稱的非空數(shù)集;對于有定義域奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念——非奇非偶函數(shù).關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想的效果.

1.觀察如下兩圖(圖略),思考并討論以下問題:

(1)這兩個(gè)函數(shù)圖像有什么共同特征?cnsjbj.cn

(2)相應(yīng)的兩個(gè)函數(shù)值對應(yīng)表是如何體現(xiàn)這些特征的?

可以看到兩個(gè)函數(shù)的圖像都關(guān)于y軸對稱.從函數(shù)值對應(yīng)表可以看到,當(dāng)自變量x取一對相反數(shù)時(shí),相應(yīng)的兩個(gè)函數(shù)值相同.

2.觀察函數(shù)f(x)=x和f(x)=的.圖像,并完成下面的兩個(gè)函數(shù)值對應(yīng)表,然后說出這兩個(gè)函數(shù)有什么共同特征.

可以看到兩個(gè)函數(shù)的圖像都關(guān)于原點(diǎn)對稱.函數(shù)圖像的這個(gè)特征,反映在解析式上就是:當(dāng)自變量x取一對相反數(shù)時(shí),相應(yīng)的函數(shù)值f(x)也是一對相反數(shù),即對任一x∈R都有f(-x)=-f(x).此時(shí),稱函數(shù)y=f(x)為奇函數(shù).

由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義.

1.奇、偶函數(shù)的定義.

如果對于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù).如果對于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù).

2.提出問題,組織學(xué)生討論.

(1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎?

(2)奇、偶函數(shù)的圖像有什么特征?

(3)奇、偶函數(shù)的定義域有什么特征?

[例題]

1.判斷下列函數(shù)的奇偶性.

注:①規(guī)范解題格式;②對于(5)要注意定義域x∈(-1,1].

2.已知:定義在R上的函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x(1+x),求f(x)的表達(dá)式.

解:(1)任取x0,∴f(-x)=-x(1-x),而f(x)是奇函數(shù),∴f(-x)=-f(x),∴f(x)=x(1-x).

(2)當(dāng)x=0時(shí),f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

3.已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)內(nèi)是增函數(shù),還是減函數(shù),并證明你的結(jié)論.

解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對稱,猜想f(x)在(0,+∞)內(nèi)是增函數(shù),證明如下:

∴f(x)在(0,+∞)上是增函數(shù).

思考:奇函數(shù)或偶函數(shù)在關(guān)于原點(diǎn)對稱的兩個(gè)區(qū)間上的單調(diào)性有何關(guān)系?

[練習(xí)]

1.已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調(diào)性如何.

4.設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

1.有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個(gè)?

2.設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:

(1)F(x)=f(x)·g(x)的奇偶性.

(2)G(x)=|f(x)|+g(x)的奇偶性.

3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù).

4.一個(gè)定義在R上的函數(shù),是否都可以表示為一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和的形式?

高一函數(shù)課件【篇10】

初中數(shù)學(xué)知識少、淺、難度容易、知識面笮。高中數(shù)學(xué)知識廣泛,將對初中的數(shù)學(xué)知識推廣和引伸,也是對初中數(shù)學(xué)知識的完善。如:初中學(xué)習(xí)的角的概念只是“0—1800”范圍內(nèi)的,但實(shí)際當(dāng)中也有7200和“—300”等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負(fù)在內(nèi)的所有大小角。又如:高中要學(xué)習(xí)《立體幾何》,將在三維空間中求一些幾何實(shí)體的體積和表面積;還將學(xué)習(xí)“排列組合”知識,以便解決排隊(duì)方法種數(shù)等問題。如:①三個(gè)人排成一行,有幾種排隊(duì)方法,( =6種);②四人進(jìn)行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學(xué)習(xí)統(tǒng)計(jì)這些排列的數(shù)學(xué)方法。初中中對一個(gè)負(fù)數(shù)開平方無意義,但在高中規(guī)定了i2=-1,就使-1的平方根為±i.即可把數(shù)的概念進(jìn)行推廣,使數(shù)的概念擴(kuò)大到復(fù)數(shù)范圍等。這些知識同學(xué)們在以后的學(xué)習(xí)中將逐漸學(xué)習(xí)到。

(1)初中課堂教學(xué)量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學(xué)理解知識點(diǎn)和解題方法,課后老師布置作業(yè),然后通過大量的課堂內(nèi)、外練習(xí)、課外指導(dǎo)達(dá)到對知識的反反復(fù)復(fù)理解,直到學(xué)生掌握。而高中數(shù)學(xué)的學(xué)習(xí)隨著課程開設(shè)多(有九們課學(xué)生同時(shí)學(xué)習(xí)),每天至少上六節(jié)課,自習(xí)時(shí)間三節(jié)課,這樣各科學(xué)習(xí)時(shí)間將大大減少,而教師布置課外題量相對初中減少,這樣集中數(shù)學(xué)學(xué)習(xí)的時(shí)間相對比初中少,數(shù)學(xué)教師將相初中那樣監(jiān)督每個(gè)學(xué)生的作業(yè)和課外練習(xí),就能達(dá)到相初中那樣把知識讓每個(gè)學(xué)生掌握后再進(jìn)行新課。

初中學(xué)生自學(xué)那能力低,大凡考試中所用的解題方法和數(shù)學(xué)思想,在初中教師基本上已反復(fù)訓(xùn)練,老師把學(xué)生要學(xué)生自己高度深刻理解的問題,都集中表現(xiàn)在他的耐心的講解和大量的訓(xùn)練中,而且學(xué)生的聽課只需要熟記結(jié)論就可以做題(不全是),學(xué)生不需自學(xué)。但高中的知識面廣,知識要全部要教師訓(xùn)練完高考中的習(xí)題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習(xí)題,如果不自學(xué)、不靠大量的閱讀理解,將會使學(xué)生失去一類型習(xí)題的解法。另外,科學(xué)在不斷的發(fā)展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數(shù)學(xué)題型的開發(fā)在不斷的多樣化,近年來提出了應(yīng)用型題、探索型題和開放型題,只有靠學(xué)生的自學(xué)去深刻理解和創(chuàng)新才能適應(yīng)現(xiàn)代科學(xué)的發(fā)展。

其實(shí),自學(xué)能力的提高也是一個(gè)人生活的需要,他從一個(gè)方面也代表了一個(gè)人的素養(yǎng),人的一生只有18---24年時(shí)間是有導(dǎo)師的學(xué)習(xí),其后半生,最精彩的人生是人在一生學(xué)習(xí),靠的自學(xué)最終達(dá)到了自強(qiáng)。

初中學(xué)生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學(xué)生有,但隨著知識的難度大和知識面廣泛,學(xué)生不能全部模仿,即就是學(xué)生全部模仿訓(xùn)練做題,也不能開拓學(xué)生自我思維能力,學(xué)生的數(shù)學(xué)成績也只能是一般程度?,F(xiàn)在高考數(shù)學(xué)考察,旨在考察學(xué)生能力,避免學(xué)生高分低能,避免定勢思維,提倡創(chuàng)新思維和培養(yǎng)學(xué)生的創(chuàng)造能力培養(yǎng)。初中學(xué)生大量地模仿使學(xué)生帶來了不利的思維定勢,對高中學(xué)生帶來了保守的、僵化的思想,封閉了學(xué)生的豐富反對創(chuàng)造精神。如學(xué)生在解決:比較a與2a的大小時(shí)要不就錯(cuò)、要不就答不全面。大多數(shù)學(xué)生不會分類討論。

初中數(shù)學(xué)中,題目、已知和結(jié)論用常數(shù)給出的較多,一般地,答案是常數(shù)和定量。學(xué)生在分析問題時(shí),大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數(shù)學(xué)學(xué)習(xí)中我們將會大量地、廣泛地應(yīng)用代數(shù)的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時(shí)我們采用對方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時(shí)的所有根的情形,使學(xué)生很快的掌握了對所有一元二次方程的解法。另外,在高中學(xué)習(xí)中我們還會通過對變量的分析,探索出分析、解決問題的思路和解題所用的數(shù)學(xué)思想。

初中學(xué)生由于學(xué)習(xí)數(shù)學(xué)知識的范圍小,知識層次低,知識面笮,對實(shí)際問題的思維受到了局限,就幾何來說,我們都接觸的是現(xiàn)實(shí)生活中三維空間,但初中只學(xué)了平面幾何,那么就不能對三維空間進(jìn)行嚴(yán)格的邏輯思維和判斷。代數(shù)中數(shù)的范圍只限定在實(shí)數(shù)中思維,就不能深刻的解決方程根的類型等。高中數(shù)學(xué)知識的多元化和廣泛性,將會使學(xué)生全面、細(xì)致、深刻、嚴(yán)密的分析和解決問題。也將培養(yǎng)學(xué)生高素質(zhì)思維。提高學(xué)生的思維遞進(jìn)性。

高一函數(shù)課件【篇11】

同一只封建宗法制度的黑手,伸出了兩條繩索,捆住了婦女的脖子,朝著相反的方向緊勒,要把勞動?jì)D女置于死地而后快。祥林嫂當(dāng)時(shí)就處在這種極端悲慘的境地中:

族權(quán)迫使她寡而再嫁,夫權(quán)又視此為奇恥大辱,使她忍辱含冤,永遠(yuǎn)生活在恥辱之中。祥林嫂以后的悲劇,都是由此而引起的。

那么,祥林嫂是如何對待新迫害的呢?

3.高潮:

①祥林嫂為什么又一次來到魯四老爺家?

②有人認(rèn)為,喪夫失子有偶然性,這種看法對不對?

喪夫失子似乎有偶然性,然而隱藏在偶然性背后的,是那起決定作用的必然性。祥林嫂的丈夫死于舊社會中蔓延著的傳染病傷寒,阿毛死于祥林嫂的貧困、勞碌。(若不是忙著打柴摘茶養(yǎng)蠶,能讓年僅兩三歲的孩子去剝豆嗎?)因此,實(shí)質(zhì)上,是罪惡的政權(quán)奪走了祥林嫂的丈夫和兒子的生命,使她陷于嫁而再寡的境地。作者開始把批判的筆觸由封建夫權(quán)、族權(quán)擴(kuò)展到封建政權(quán)。

按照封建宗法觀念,婦女出嫁從夫,夫死從子,一旦喪夫失子,則連在家庭中生存的權(quán)利都被剝奪了。因此,大伯來收屋使祥林嫂走投無路,只好再一次來到魯家。她到魯家后,又遭受了更大的打擊。

③在魯四老爺,人們對待祥林嫂這個(gè)嫁而再寡的不幸女人態(tài)度如何?

A.魯四老爺?shù)膽B(tài)度:

魯四老爺站在頑固維護(hù)封建宗法制度的立場上,從精神上殘酷地虐殺她。他暗暗地告誡四嬸的那段話,就是置祥林嫂于死地而又不露一絲血痕的軟刀子。(通過四嬸先后喊出三句你放著罷,殺人不見血地葬送了祥林嫂的性命。)

B.人們的態(tài)度:

人們叫她的聲調(diào)和先前很不同。

魯迅用他那犀利的筆鋒,從廣闊的領(lǐng)域里揭示了封建社會黑暗的程度。

人們對祥林嫂的態(tài)度,使她感到痛苦與迷惑。她不時(shí)地向人們訴說著自己不幸的遭遇,她的精神卻慘遭蹂躪。而柳媽的說鬼又給祥林嫂新的打擊。

C.柳媽說鬼:

④祥林嫂是如何對待這如此沉重的打擊的?其結(jié)果如何?

為了爭得做人的權(quán)利,為了求得一線生存的希望,她在竭盡全力地反抗著:

她背著沉重的精神包袱,整日勞碌著,以便積夠十二元鷹洋,用捐門檻的方法去擺脫人們在陽世、陰世間給她設(shè)下的罪名,她忍受著咬嚙人心的嘲笑和侮辱,在無邊的寂寞和悲哀中,默默干了一年,這是何等堅(jiān)韌的反抗精神??!

而反抗的結(jié)果,出乎柳媽、祥林嫂的預(yù)想,這血淋淋的事實(shí)深刻地說明了:祥林嫂是無法贖罪的,祥林嫂陷入了求生不得,欲死不能的境地。

4.結(jié)局:

當(dāng)祥林嫂被折磨得像木偶人,喪失了當(dāng)牛做馬的條件后,魯四老爺就一腳把她踢出門外,使她終于成了只有那眼珠間或一輪,還可以表示她是一個(gè)活物的僵尸。即使這樣,她在臨死前,還向我提出了三個(gè)問題:

A.一個(gè)人死了之后,究竟有沒有魂靈的?

B.那么,也就有地獄了?

C.那么,死掉的一家的人,都能見面的?

這是對魂靈的有無表示疑惑。

她希望人死后有靈魂,因?yàn)樗肟匆娮约旱膬鹤?;她害怕人死后有靈魂,因?yàn)樗ε略陉庨g被鋸成兩半。這種疑惑是她對自己命運(yùn)的疑惑,但也正是這種疑惑,這種無法解脫的矛盾,使她在臨死前受到了極大的精神折磨,最后,悲慘地死去。

從祥林嫂一生的悲慘遭遇中,可以清楚地看到,封建的宗法制度正是用政權(quán)、族權(quán)、神權(quán)、夫權(quán)這四條繩索把祥林嫂活活地勒死的。

祥林嫂一生的悲慘遭遇,正是舊中國千百萬勞動?jì)D女悲慘遭遇的真實(shí)寫照。作者正是通過塑造祥林嫂這一典型人物,對吃人的封建制度和封建禮教進(jìn)行深刻的揭露和有力地抨擊的。

小結(jié):

祥林嫂是生活在舊中國的一個(gè)被踐踏、被愚弄、被迫害、被鄙視的勤勞、善良、質(zhì)樸、頑強(qiáng)的勞動?jì)D女的典型形象。

總之,祥林嫂的悲劇是一個(gè)社會悲劇,造成這一悲劇的根源是封建禮教對中國勞動?jì)D女的摧殘和封建思想對當(dāng)時(shí)中國社會的根深蒂固的統(tǒng)治。

第三課時(shí)

本課時(shí)重點(diǎn)分析魯四老爺、我和柳媽的形象。

一、檢查作業(yè):

二、分析魯四老爺:

魯四老爺是當(dāng)時(shí)農(nóng)村中地主階級的代表人物,是資產(chǎn)階級民主革命時(shí)期地主階級知識分子的典型形象。他政治上迂腐、保守,頑固地維護(hù)舊有的封建制度,反對一切改革與革命。他思想上反動,尊崇理學(xué)和孔孟之道。自覺維護(hù)封建制度和封建禮教。他是造成祥林嫂悲劇的一個(gè)重要人物。

1.作者是通過什么手法來刻畫這個(gè)人物的呢?

①間接描寫:

通過魯四老爺?shù)臅筷愒O(shè)的描寫,點(diǎn)明了魯四老爺?shù)纳矸郑ǖ刂麟A級、封建理學(xué)的衛(wèi)道士),揭露了他的丑惡本質(zhì),從而揭示出他成為殺害祥林嫂的劊子手的深刻的階級根源和思想根源。

②直接描寫:

A.行動描寫:

這表現(xiàn)在祥林嫂被搶走的兩件事上:

當(dāng)婆婆一邊搶人一邊來領(lǐng)工錢時(shí),魯四老爺把祥林嫂一文還沒有的工錢全交給了婆婆。

與此相對照的是對被壓迫的寡婦祥林嫂的冷酷無情。

祥林嫂曾那樣辛勤地為魯家勞動過,可當(dāng)她遭到惡運(yùn)時(shí),魯家卻無動于衷,連祥林嫂走沒走、怎么走的,都毫不過問,只是到了正午,四嬸肚子餓了,這才想起了祥林嫂淘米時(shí)拿走米和淘籮,于是傾巢出動分頭尋淘籮;連平時(shí)擺派頭、端架子的魯四老爺都踱出門外,直到河邊,等看見米和淘籮平平正正的放在岸上,旁邊還有一株菜時(shí),這才放心。這場虛驚,入木三分地揭露了:在封建統(tǒng)治者的眼里,一個(gè)勞動?jì)D女的命運(yùn)都不如一個(gè)淘籮、一點(diǎn)米、一株菜,魯四老爺冷酷殘忍的嘴臉躍然紙上。

B.語言描寫:

在祥林嫂的問題上,魯四老爺一共開過六次口,說了百十來個(gè)字,卻就把他反動、頑固、虛偽自私、陰險(xiǎn)狠毒的性格特征,把他殺害祥林嫂的罪行,揭露得淋漓盡致。

a.祥林嫂被搶前:

b.祥林嫂被搶時(shí):

c.當(dāng)他為尋淘籮,踱到河邊時(shí):

d.緊接著,午飯之后,衛(wèi)婆子又來時(shí):

e.對四嬸的暗暗告誡:

f.祥林嫂死后:

作為這六次開口背景的是魯四老爺虛偽寒暄后的大罵其新黨,它恰恰深刻地揭示了那六次開口的根源。

三、分析我這一形象:

小說中的我是一個(gè)具有進(jìn)步思想的小資產(chǎn)階級知識分子的形象。我有反封建的思想傾向,憎惡魯四老爺,同情祥林嫂。對祥林嫂提出的魂靈的有無的問題,之所以作了含糊的回答,有其善良的一面;同時(shí)也反映了我的軟弱和無能。

在小說的結(jié)構(gòu)上,我又起著線索的作用。祥林嫂一生的悲慘遭遇都是通過我的所見所聞來展現(xiàn)的。我是事件的見證人。

四、分析柳媽:

問:有人認(rèn)為柳媽是幫助魯四老爺殺害祥林嫂的兇手。你是怎樣來看待這一問題呢?

明確:柳媽和祥林嫂一樣都是舊社會的受害者。雖然她臉上已經(jīng)打皺,眼睛已經(jīng)干枯,可是在年節(jié)時(shí)還要給地主去幫工,可見,她也是一個(gè)受壓迫的勞動?jì)D女。但是,由于她受封建迷信思想和封建禮教的毒害很深,相信天堂、地獄之類邪說和餓死事小,失節(jié)事大的理學(xué)信條,所以她對祥林嫂改嫁時(shí)頭上留下的傷疤,采取奚落的態(tài)度。至于她講陰司故事給祥林嫂聽,也完全出于善意,主觀愿望還是想為祥林嫂尋求贖罪的辦法,救她跳出苦海,并非要置祥林嫂于死地,只是結(jié)果適得其反。

她的主觀愿望和客觀效果的矛盾說明柳媽是以剝削階級統(tǒng)治人民的思想──封建禮教和封建迷信思想為指導(dǎo),來尋求解救祥林嫂的藥方的,這不但不會產(chǎn)生療效的效果,反而給自己的姐妹造成了難以支持的精神重壓,把祥林嫂推向更恐怖的深淵之中。

高一函數(shù)課件【篇12】

1.2解三角形應(yīng)用舉例第四課時(shí)

一、教學(xué)目標(biāo)

1、能夠運(yùn)用正弦定理、余弦定理等知識和方法進(jìn)一步解決有關(guān)三角形的問題,掌握三角形的面積公式的簡單推導(dǎo)和應(yīng)用

2、本節(jié)課補(bǔ)充了三角形新的面積公式,巧妙設(shè)疑,引導(dǎo)學(xué)生證明,同時(shí)總結(jié)出該公式的特點(diǎn),循序漸進(jìn)地具體運(yùn)用于相關(guān)的題型。另外本節(jié)課的證明題體現(xiàn)了前面所學(xué)知識的生動運(yùn)用,教師要放手讓學(xué)生摸索,使學(xué)生在具體的論證中靈活把握正弦定理和余弦定理的特點(diǎn),能不拘一格,一題多解。只要學(xué)生自行掌握了兩定理的特點(diǎn),就能很快開闊思維,有利地進(jìn)一步突破難點(diǎn)。

3、讓學(xué)生進(jìn)一步鞏固所學(xué)的知識,加深對所學(xué)定理的理解,提高創(chuàng)新能力;進(jìn)一步培養(yǎng)學(xué)生研究和發(fā)現(xiàn)能力,讓學(xué)生在探究中體驗(yàn)愉悅的成功體驗(yàn)

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):推導(dǎo)三角形的面積公式并解決簡單的相關(guān)題目

難點(diǎn):利用正弦定理、余弦定理來求證簡單的證明題

三、教學(xué)過程

Ⅰ.課題導(dǎo)入

[創(chuàng)設(shè)情境]

師:以前我們就已經(jīng)接觸過了三角形的面積公式,今天我們來學(xué)習(xí)它的另一個(gè)表達(dá)公式。在

ABC中,邊BC、CA、AB上的高分別記為h、h、h,那么它們?nèi)绾斡靡阎吅徒潜硎荆?/p>

生:h=bsinC=csinBh=csinA=asinCh=asinB=bsinaA

師:根據(jù)以前學(xué)過的三角形面積公式S=ah,應(yīng)用以上求出的高的公式如h=bsinC代入,可以推導(dǎo)出下面的三角形面積公式,S=absinC,大家能推出其它的幾個(gè)公式嗎?

生:同理可得,S=bcsinA,S=acsinB

Ⅱ.講授新課

[范例講解]

例1、在ABC中,根據(jù)下列條件,求三角形的面積S(精確到0.1cm)

(1)已知a=14cm,c=24cm,B=150;

(2)已知B=60,C=45,b=4cm;

(3)已知三邊的長分別為a=3cm,b=4cm,c=6cm

分析:這是一道在不同已知條件下求三角形的面積的問題,與解三角形問題有密切的關(guān)系,我們可以應(yīng)用解三角形面積的知識,觀察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面積。

解:略

例2、如圖,在某市進(jìn)行城市環(huán)境建設(shè)中,要把一個(gè)三角形的區(qū)域改造成室內(nèi)公園,經(jīng)過測量得到這個(gè)三角形區(qū)域的三條邊長分別為68m,88m,127m,這個(gè)區(qū)域的面積是多少?(精確到0.1cm)?

思考:你能把這一實(shí)際問題化歸為一道數(shù)學(xué)題目嗎?

本題可轉(zhuǎn)化為已知三角形的三邊,求角的問題,再利用三角形的面積公式求解。

解:設(shè)a=68m,b=88m,c=127m,根據(jù)余弦定理的推論,

cosB==≈0.7532

sinB=0.6578應(yīng)用S=acsinB

S≈681270.6578≈2840.38(m)

答:這個(gè)區(qū)域的面積是2840.38m。

變式練習(xí)1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面積S

提示:解有關(guān)已知兩邊和其中一邊對角的問題,注重分情況討論解的個(gè)數(shù)。

答案:a=6,S=9;a=12,S=18

例3、在ABC中,求證:

(1)

(2)++=2(bccosA+cacosB+abcosC)

分析:這是一道關(guān)于三角形邊角關(guān)系恒等式的證明問題,觀察式子左右兩邊的特點(diǎn),用正弦定理來證明

證明:(1)根據(jù)正弦定理,可設(shè)

===k顯然k0,所以

左邊===右邊

(2)根據(jù)余弦定理的推論,

右邊=2(bc+ca+ab)

=(b+c-a)+(c+a-b)+(a+b-c)=a+b+c=左邊

變式練習(xí)2:判斷滿足sinC=條件的三角形形狀

提示:利用正弦定理或余弦定理,“化邊為角”或“化角為邊”(解略)直角三角形

Ⅲ.課堂練習(xí)課本第18頁練習(xí)第1、2、3題

Ⅳ.課時(shí)小結(jié)

利用正弦定理或余弦定理將已知條件轉(zhuǎn)化為只含邊的式子或只含角的三角函數(shù)式,然后化簡并考察邊或角的關(guān)系,從而確定三角形的形狀。特別是有些條件既可用正弦定理也可用余弦定理甚至可以兩者混用。

Ⅴ.課后作業(yè)

《習(xí)案》作業(yè)七

相信《高一函數(shù)課件》一文能讓您有很多收獲!“幼兒教師教育網(wǎng)”是您了解幼師資料,工作計(jì)劃的必備網(wǎng)站,請您收藏yjs21.com。同時(shí),編輯還為您精選準(zhǔn)備了高一函數(shù)課件專題,希望您能喜歡!

相關(guān)推薦

  • 一次函數(shù)課件教案精選 編輯花費(fèi)一定時(shí)間整理出了《一次函數(shù)課件教案》的內(nèi)容。無論是哪位老師,都需要耗費(fèi)精力編寫教案和課件,為的是能夠上好課。因此,每一位老師都會花費(fèi)時(shí)間和心思完善自己的教案和課件,目的是為了更好地授課。詳細(xì)而系統(tǒng)的教案有助于對授課內(nèi)容進(jìn)行深入的規(guī)劃和設(shè)計(jì)。我們希望這些整理好的教案能對各位老師提供一些有用的幫...
    2023-05-16 閱讀全文
  • 函數(shù)課件(必備11篇) 我們常說,機(jī)會是留給有準(zhǔn)備的人。在平日里的學(xué)習(xí)中,幼兒園教師時(shí)常會提前準(zhǔn)備好有用的資料。資料一般指生產(chǎn)、生活中閱讀,學(xué)習(xí),參考必需的東西。資料可以幫助我們更高效地完成各項(xiàng)工作??墒?,我們的幼師資料具體又有哪些內(nèi)容呢?以下由小編為大家精心整理的“函數(shù)課件”,供你參考,希望能夠幫助到大家。23冪函數(shù) 教...
    2023-05-24 閱讀全文
  • 二次函數(shù)課件經(jīng)典 優(yōu)秀的人總是會提前做好準(zhǔn)備,在學(xué)習(xí)工作中,幼兒園教師有提前準(zhǔn)備可能會使用到資料的習(xí)慣。資料的意義非常的廣泛,可以指需要查到某樣?xùn)|西所需要的素材。參考資料有利于我們完成相應(yīng)的學(xué)習(xí)工作目標(biāo)。所以,你是否知曉幼師資料到底是怎樣的形式呢?根據(jù)你的需要,小編精心整理了二次函數(shù)課件經(jīng)典,我們后續(xù)還將不斷提供這方...
    2023-07-03 閱讀全文
  • 數(shù)學(xué)函數(shù)課件分享15篇 每個(gè)老師都需要在課前有一份完整教案課件,因此每天老師都會按質(zhì)按時(shí)去寫好教案課件。教案是課堂教學(xué)的靈魂,我們應(yīng)該從什么方面寫教案課件?經(jīng)過收集,欄目小編為您獻(xiàn)上數(shù)學(xué)函數(shù)課件,敬請參閱本文!...
    2023-04-20 閱讀全文
  • 高一數(shù)學(xué)課件錦集 俗話說,做什么事都要有計(jì)劃和準(zhǔn)備。在幼兒園教師的生活工作中,時(shí)常需要提前準(zhǔn)備資料作為參考。資料主要是指生活學(xué)習(xí)工作中需要的材料。資料對我們的學(xué)習(xí)工作發(fā)展有著重要的意義!所以,關(guān)于幼師資料你究竟了解多少呢?小編特別整理來自網(wǎng)絡(luò)的高一數(shù)學(xué)課件錦集,歡迎大家閱讀收藏,分享給身邊的人!本節(jié)課是《普通高中課程...
    2023-06-11 閱讀全文

編輯花費(fèi)一定時(shí)間整理出了《一次函數(shù)課件教案》的內(nèi)容。無論是哪位老師,都需要耗費(fèi)精力編寫教案和課件,為的是能夠上好課。因此,每一位老師都會花費(fèi)時(shí)間和心思完善自己的教案和課件,目的是為了更好地授課。詳細(xì)而系統(tǒng)的教案有助于對授課內(nèi)容進(jìn)行深入的規(guī)劃和設(shè)計(jì)。我們希望這些整理好的教案能對各位老師提供一些有用的幫...

2023-05-16 閱讀全文

我們常說,機(jī)會是留給有準(zhǔn)備的人。在平日里的學(xué)習(xí)中,幼兒園教師時(shí)常會提前準(zhǔn)備好有用的資料。資料一般指生產(chǎn)、生活中閱讀,學(xué)習(xí),參考必需的東西。資料可以幫助我們更高效地完成各項(xiàng)工作??墒?,我們的幼師資料具體又有哪些內(nèi)容呢?以下由小編為大家精心整理的“函數(shù)課件”,供你參考,希望能夠幫助到大家。23冪函數(shù) 教...

2023-05-24 閱讀全文

優(yōu)秀的人總是會提前做好準(zhǔn)備,在學(xué)習(xí)工作中,幼兒園教師有提前準(zhǔn)備可能會使用到資料的習(xí)慣。資料的意義非常的廣泛,可以指需要查到某樣?xùn)|西所需要的素材。參考資料有利于我們完成相應(yīng)的學(xué)習(xí)工作目標(biāo)。所以,你是否知曉幼師資料到底是怎樣的形式呢?根據(jù)你的需要,小編精心整理了二次函數(shù)課件經(jīng)典,我們后續(xù)還將不斷提供這方...

2023-07-03 閱讀全文

每個(gè)老師都需要在課前有一份完整教案課件,因此每天老師都會按質(zhì)按時(shí)去寫好教案課件。教案是課堂教學(xué)的靈魂,我們應(yīng)該從什么方面寫教案課件?經(jīng)過收集,欄目小編為您獻(xiàn)上數(shù)學(xué)函數(shù)課件,敬請參閱本文!...

2023-04-20 閱讀全文

俗話說,做什么事都要有計(jì)劃和準(zhǔn)備。在幼兒園教師的生活工作中,時(shí)常需要提前準(zhǔn)備資料作為參考。資料主要是指生活學(xué)習(xí)工作中需要的材料。資料對我們的學(xué)習(xí)工作發(fā)展有著重要的意義!所以,關(guān)于幼師資料你究竟了解多少呢?小編特別整理來自網(wǎng)絡(luò)的高一數(shù)學(xué)課件錦集,歡迎大家閱讀收藏,分享給身邊的人!本節(jié)課是《普通高中課程...

2023-06-11 閱讀全文
熟女中文字幕| 日韩黄片免费视频看片| 国产免费黄频| 人妻精美久久| 国产伦精品一区二区三区四区视频| 精品无码网站| 国产在线观看一二三区| 欧美棕合激情高清視頻| 国产精品久久久一级毛片| 漂亮人妻被中出中文字幕| 日韩欧美破处| 开心亚洲综合| 成人酒色网| 亚洲成人一区二区三区| www.伊人网| 乱吊一区二区| 国产啊啊啊啊啊啊在线| 日韩理论影院| 午夜国产片| 久久黄色一| 99xxxx网址| 香蕉国产2023| 9污在线观看一区区| 香港三级在线无码人妻| 亚洲精品理论观看视频| 日日夜精品免费| 乱亲女H秽乱长久久久| 亚洲日韩av一区二区| 中文网丁香综合网| 亚洲 欧美 日韩成人| 五月天婷婷在线视频| 日韩网站视频在线| 在线免费观看涩涩视频| 亚洲天堂国产一区综合| 女人被爽到高潮视频免费国产| 一区二区欧美黄片播放| A级毛片视频免费看| H精品在线| av日本| 日韩加勒比| 波多野结衣a区|