一、將三門基礎(chǔ)2113課作為一個(gè)整體去學(xué),摒棄孤立5261的學(xué)習(xí),提倡綜合4102的思考
恩格斯曾經(jīng)說(shuō)1653過(guò):“數(shù)學(xué)是研究數(shù)和形的科學(xué)?!边@位先哲對(duì)數(shù)學(xué)的這一概括,從現(xiàn)代數(shù)學(xué)的發(fā)展來(lái)看,已經(jīng)遠(yuǎn)遠(yuǎn)不夠準(zhǔn)確了,但這一概括卻點(diǎn)明了數(shù)學(xué)最本質(zhì)的研究對(duì)象,即為“數(shù)”與“形”。比如說(shuō),從“數(shù)”的研究衍生出數(shù)論、代數(shù)、函數(shù)、方程等數(shù)學(xué)分支;從“形”的研究衍生出幾何、拓?fù)涞葦?shù)學(xué)分支。20世紀(jì)以來(lái),這些傳統(tǒng)的數(shù)學(xué)分支相互滲透、相互交叉,形成了現(xiàn)代數(shù)學(xué)最前沿的研究方向,比如說(shuō),代數(shù)數(shù)論、解析數(shù)論、代數(shù)幾何、微分幾何、代數(shù)拓?fù)?、微分拓?fù)涞鹊???梢哉f(shuō),現(xiàn)代數(shù)學(xué)正朝著各種數(shù)學(xué)分支相互融合的方向繼續(xù)蓬勃地發(fā)展下去。
數(shù)學(xué)分析、高等代數(shù)、空間解析幾何這三門基礎(chǔ)課,恰好是數(shù)學(xué)最重要的三個(gè)分支--分析、代數(shù)、幾何的最重要的基礎(chǔ)課程。根據(jù)課程的特點(diǎn),每門課程的學(xué)習(xí)方法當(dāng)然各不相同,但是如果不能以一種整體的眼光去學(xué)習(xí)和思考,即使每門課都得了A,也不見得就學(xué)的很好。學(xué)院的資深教授曾向我們抱怨:“有的問(wèn)題只要畫個(gè)圖,想一想就做出來(lái)了,怎么現(xiàn)在的學(xué)生做題,拿來(lái)就只知道死算,連個(gè)圖也不畫一下?!碑?dāng)然,造成這種不足的原因肯定是多方面的。比如說(shuō),從教的角度來(lái)看,各門課程的教材或授課在某種程度上過(guò)于強(qiáng)調(diào)自身的特點(diǎn),很少以整體的眼光去講授課程或處理問(wèn)題,課程之間的相互聯(lián)系也涉及的較少;從學(xué)的角度來(lái)看,學(xué)生們大都處于孤立學(xué)習(xí)的狀態(tài),也就是說(shuō),孤立在某門課程中學(xué)習(xí)這門課程,缺乏對(duì)多門課程的整體把握和綜合思考。
根據(jù)我的經(jīng)驗(yàn),將高等代數(shù)和空間解析幾何作為一個(gè)整體去學(xué),效果肯定比單獨(dú)學(xué)好,因?yàn)楦叩却鷶?shù)中最核心的概念是“線性空間”,這是一個(gè)幾何對(duì)象;而且高等代數(shù)中的很多內(nèi)容都是空間解析幾何自然的延續(xù)和推廣。另外,高等代數(shù)中還有很多分析方面的技巧,比如說(shuō)“攝動(dòng)法”,它是一種分析的方法,可以讓我們把問(wèn)題從一般矩陣化到非異矩陣的情形。因此,要學(xué)好高等代數(shù),首先要跳出高等代數(shù),將三門基礎(chǔ)課作為一個(gè)整體去學(xué),摒棄孤立的學(xué)習(xí),提倡綜合的思考。
二、正確認(rèn)識(shí)代數(shù)學(xué)的特點(diǎn),在抽象和具體之間找到結(jié)合點(diǎn)
代數(shù)學(xué)(包括高等代數(shù)和抽象代數(shù))給人的印象就是“抽象”,這與另外兩門基礎(chǔ)課有很大的不同。以“線性空間”的定義為例,集合V上定義了加法和數(shù)乘兩種運(yùn)算,并且這兩種運(yùn)算滿足八條性質(zhì),那么V就稱為線性空間。我想第一次學(xué)高等代數(shù)的同學(xué)都會(huì)認(rèn)為這個(gè)定義太抽象了。其實(shí)在高等代數(shù)中,這樣抽象的定義比比皆是。不過(guò)這樣的抽象是有意義的,因?yàn)槲覀兛梢则?yàn)證三維歐氏空間、連續(xù)函數(shù)全體、多項(xiàng)式全體、矩陣全體都是線性空間,也就是說(shuō),線性空間是從許多具體例子中抽象出來(lái)的概念,具有絕對(duì)的一般性。代數(shù)學(xué)的研究方法是,從許多具體的例子中抽象出某個(gè)概念;然后通過(guò)代數(shù)的方法對(duì)這一概念進(jìn)行研究,得到一般的結(jié)論;最后再將這些結(jié)論返回到具體的例子中,得到各種運(yùn)用。因此,“具體--抽象--具體”,這便是代數(shù)學(xué)的特點(diǎn)。
在認(rèn)識(shí)了代數(shù)學(xué)的特點(diǎn)后,就可以有的放矢地學(xué)習(xí)高等代數(shù)了。我們可以通過(guò)具體的例子去理解抽象的定義和證明;我們可以將定理的結(jié)論運(yùn)用到具體的例子中,從而加深對(duì)定理的理解和掌握;我們還可以通過(guò)具體例子的啟發(fā),去發(fā)現(xiàn)和證明一些新的結(jié)果。因此,要學(xué)好高等代數(shù),就需要正確認(rèn)識(shí)抽象和具體的辯證關(guān)系,在抽象和具體之間找到結(jié)合點(diǎn)。
三、高等代數(shù)不僅要學(xué)代數(shù),也要學(xué)幾何,更要在代數(shù)和幾何之間建立一座橋梁
隨著時(shí)代的變遷,高等代數(shù)的教學(xué)內(nèi)容和方式也在不斷的發(fā)展。大概在90年代之前,國(guó)內(nèi)高校的高等代數(shù)教材大多以“矩陣論”作為中心,比較強(qiáng)調(diào)矩陣論的相關(guān)技巧;90年代之后,國(guó)內(nèi)高校的高等代數(shù)教材漸漸地改變?yōu)橐浴熬€性空間理論”作為中心,比較強(qiáng)調(diào)幾何的意義。作為縮影,復(fù)旦的高等代數(shù)教材也經(jīng)歷了這樣一個(gè)變化過(guò)程,1993年之前采用的屠伯塤老師的教材強(qiáng)調(diào)“矩陣論”;1993年之后采用的姚慕生老師的教材強(qiáng)調(diào)“線性空間理論”。從單純重視“代數(shù)”到“代數(shù)”與“幾何”并重,這其實(shí)是高等代數(shù)教學(xué)觀念的一種全球性的改變,可能這種改變與現(xiàn)代數(shù)學(xué)的發(fā)展密切相關(guān)吧!
學(xué)好高等代數(shù)的有效方法應(yīng)該是:
深入理解幾何意義、熟練掌握代數(shù)方法。
其次,高等代數(shù)中很多問(wèn)題都是幾何的問(wèn)題,我們經(jīng)常將幾何的問(wèn)題代數(shù)化,然后用代數(shù)的方法去解決它。當(dāng)然,對(duì)于一些代數(shù)的問(wèn)題,我們有時(shí)也將其幾何化,然后用幾何的方法去解決它。
最后,代數(shù)和幾何之間存在一座橋梁,這就是代數(shù)和幾何之間的轉(zhuǎn)換語(yǔ)言。有了這座橋梁,我們就可以在代數(shù)和幾何之間來(lái)去自由、游刃有余。因此,要學(xué)好高等代數(shù),不僅要學(xué)代數(shù),也要學(xué)幾何,更要在代數(shù)和幾何之間建立一座橋梁。
四、學(xué)好教材,用好教參,練好基本功
復(fù)旦現(xiàn)行的高等代數(shù)教材是姚慕生老師、吳泉水老師編著的《高等代數(shù)學(xué)(第二版)》。這本教材從1993年開始沿用至今,已有近20年的歷史。教材內(nèi)容翔實(shí)、重點(diǎn)突出、表述清晰、習(xí)題豐富,即使與全國(guó)各高校的高等代數(shù)教材相比,也不失為出類拔萃之作。
復(fù)旦現(xiàn)行的高等代數(shù)教學(xué)參考書是姚慕生老師編著的《高等代數(shù)學(xué)習(xí)方法指導(dǎo)(第二版)》(因?yàn)榉饷鏋榘咨?,俗稱“白皮書”)。這本教參書是數(shù)院本科生必備的寶典,基本上人手一冊(cè),風(fēng)行程度可見一斑。
要學(xué)好高等代數(shù),學(xué)好教材是最低的要求。另外,如何用好教參書,也是一個(gè)重要的環(huán)節(jié)。很多同學(xué)購(gòu)買教參書,主要是因?yàn)榻滩睦锏牟糠肿鳂I(yè)(包括一些很難的證明題)都可以在教參書上找到答案。當(dāng)然,這一點(diǎn)無(wú)可厚非,畢竟這就是教參書的功能嘛!但是,我還是希望一年級(jí)的新生能正確地使用教參書,遇到問(wèn)題首先自己獨(dú)立思考,實(shí)在想不出,再去看懂教參書上的解答,這樣才能達(dá)到提高能力、鍛煉思維的效果。注意:既不獨(dú)立思考,又不看懂教參書上的解答,只是抄襲,這對(duì)自己來(lái)說(shuō)是一種極不負(fù)責(zé)的行為,希望大家努力避免!
最后,我愿以華羅庚先生的一句詩(shī)“勤能補(bǔ)拙是良訓(xùn),一份辛勤一份才”與大家共勉,祝大家不斷進(jìn)步、學(xué)業(yè)有成!
通過(guò)聽了馮家樂(lè)老師的講座,使我更加深刻的認(rèn)識(shí)到“數(shù)與代數(shù)”的內(nèi)容在小學(xué)階段的數(shù)學(xué)課程中所占的重要地位和重要的教育價(jià)值。在實(shí)施新課程改革的前景下,小學(xué)階段“數(shù)與代數(shù)”的內(nèi)容無(wú)論是從內(nèi)容的取材上還是從結(jié)構(gòu)的編排上都比較貼近實(shí)際生活,為更好的培養(yǎng)學(xué)生的數(shù)感打下了堅(jiān)實(shí)的基礎(chǔ)。
下面我就談?wù)剬?duì)這次學(xué)習(xí)的心得體會(huì):
一、為什么要整體把握數(shù)學(xué)教材。
首先,數(shù)學(xué)知識(shí)是一個(gè)系統(tǒng)整體。要說(shuō)明這個(gè)問(wèn)題首先要考慮數(shù)學(xué)的本質(zhì)是什么,或者說(shuō)“什么是數(shù)學(xué)”?在課程標(biāo)準(zhǔn)的總體目標(biāo)中提出的數(shù)學(xué)知識(shí)(包括數(shù)學(xué)事實(shí)、數(shù)學(xué)活動(dòng)經(jīng)驗(yàn))是否可以簡(jiǎn)單的這樣表述:數(shù)學(xué)知識(shí)是“數(shù)與形以及演繹”的知識(shí)。由此可以看出,作為數(shù)學(xué)學(xué)習(xí)目標(biāo)之一的數(shù)學(xué)知識(shí)它應(yīng)該是一個(gè)完整的整體,是“數(shù)與形以及演繹”的知識(shí)整體,整體的知識(shí)一定是結(jié)構(gòu)的,是互相聯(lián)系的。結(jié)構(gòu)的知識(shí)一定是要系統(tǒng)整體學(xué)習(xí)才能掌握,只有系統(tǒng)整體的掌握才可能使得學(xué)生在學(xué)習(xí)知識(shí)的過(guò)程中發(fā)展智能。
二、數(shù)學(xué)學(xué)習(xí)是整體的認(rèn)知過(guò)程。
既然數(shù)學(xué)知識(shí)是一個(gè)系統(tǒng)的整體,那么數(shù)學(xué)教學(xué)應(yīng)強(qiáng)調(diào)整體聯(lián)系,以培養(yǎng)學(xué)生對(duì)數(shù)學(xué)聯(lián)系的理解。當(dāng)學(xué)生開始把數(shù)學(xué)看成一個(gè)緊密聯(lián)系的整體時(shí),他們應(yīng)被鼓勵(lì)尋找聯(lián)系以幫助他們理解和解決問(wèn)題。學(xué)生應(yīng)問(wèn)自己:“我可以換一種方式看這個(gè)問(wèn)題嗎?”、“這個(gè)情景與我以前遇到的類似嗎?”。如果遇到的是用代數(shù)表示的,他們應(yīng)考慮用幾何表示它,這樣可以加深理解或有助于他們找到解決策略。同時(shí),數(shù)學(xué)學(xué)習(xí)不是單純的知識(shí)的接受,而是以學(xué)生為主體的數(shù)學(xué)活動(dòng)?,F(xiàn)代認(rèn)知科學(xué),尤其是建構(gòu)主義學(xué)習(xí)理論強(qiáng)調(diào),“知識(shí)是不能被傳遞的,教師在課堂上傳遞的只是信息,知識(shí)必須通過(guò)學(xué)生主動(dòng)建構(gòu)才能獲得”。學(xué)習(xí)就是一個(gè)不斷打破原有的認(rèn)知結(jié)構(gòu)平衡發(fā)生同化或順應(yīng)組建新的認(rèn)知結(jié)構(gòu)達(dá)到新的平衡的過(guò)程。學(xué)生的數(shù)學(xué)學(xué)習(xí)也可以看成是數(shù)學(xué)知識(shí)結(jié)構(gòu)轉(zhuǎn)化成學(xué)生認(rèn)知結(jié)構(gòu)的過(guò)程。
三、數(shù)學(xué)教材內(nèi)容和數(shù)學(xué)教學(xué)應(yīng)該是系統(tǒng)整體的。
數(shù)學(xué)教材是根據(jù)《教學(xué)大綱》以及《數(shù)學(xué)課程標(biāo)準(zhǔn)》所規(guī)定的知識(shí)內(nèi)容和要求來(lái)編寫成的,它反映出黨和國(guó)家對(duì)于學(xué)生學(xué)習(xí)該學(xué)科知識(shí)時(shí)所要求的深度和廣度。教材的內(nèi)容是教師進(jìn)行教學(xué)的依據(jù),也是學(xué)生學(xué)習(xí)的主要材料。既然數(shù)學(xué)和數(shù)學(xué)知識(shí)是一個(gè)整體,數(shù)學(xué)學(xué)習(xí)也是整體的,那么對(duì)于教材的編寫和把握也應(yīng)該是整體的,聯(lián)系的。教材中的每一個(gè)例題就像一個(gè)神經(jīng)細(xì)胞,當(dāng)神經(jīng)細(xì)胞串連考慮周到來(lái)時(shí)就能發(fā)揮出強(qiáng)大的功能。教學(xué)教材中的各個(gè)例題之間存在著相輔相成的關(guān)系,它們的互相融合成就了一種數(shù)學(xué)思想。
同時(shí)結(jié)合教材內(nèi)容蘊(yùn)涵人文內(nèi)涵。教師要把握例題之間本質(zhì)的聯(lián)系,站在一個(gè)較高的層次上用現(xiàn)代數(shù)學(xué)的觀念去審視和處理教材,向?qū)W生傳遞一個(gè)完整的數(shù)學(xué)思想,幫助學(xué)生建立一個(gè)融會(huì)貫通的數(shù)學(xué)認(rèn)知結(jié)構(gòu)。如果把知識(shí)切割成一塊又一塊,各說(shuō)各的,碰到這道題這樣做,沒(méi)碰到過(guò)的就不會(huì)做,就容易使學(xué)生陷入背數(shù)學(xué)的一種痛苦的環(huán)境中。所以說(shuō)教師整體把握教材、駕馭教材對(duì)教學(xué)有著至關(guān)重要的影響。
總之,此次培訓(xùn)活動(dòng),使自己的教育教學(xué)觀念、教學(xué)行為方法、專業(yè)化水平,教育教學(xué)理論均有了很大的提升。今后,自己充分將所學(xué)、所悟、所感的內(nèi)容應(yīng)用到教學(xué)實(shí)踐中去。
在如今這個(gè)科學(xué)飛速發(fā)展,信息高速發(fā)達(dá),知識(shí)爆炸的新時(shí)代,現(xiàn)代社會(huì)的發(fā)展對(duì)人才培養(yǎng)提出了更高的要求,也引發(fā)了數(shù)學(xué)教學(xué)任務(wù)和性質(zhì)的根本變革。通過(guò)這學(xué)期對(duì)現(xiàn)代數(shù)學(xué)與中學(xué)教學(xué)課程的學(xué)習(xí),我不僅對(duì)中學(xué)的課程內(nèi)容有了更深刻的理解,對(duì)中學(xué)教學(xué)方法有了更進(jìn)一步改進(jìn),還更新了舊的教學(xué)觀念和教學(xué)思想,相信這些都是對(duì)我今后成長(zhǎng)為一個(gè)好老師的寶貴指導(dǎo)思想。
在課堂上,我們老師會(huì)把班里的同學(xué)分成幾個(gè)組,然后大家會(huì)先一起探討高中書本上的一些疑難點(diǎn),引導(dǎo)我們站在更高的知識(shí)層面上來(lái)分析高中課本。在這個(gè)過(guò)程中,我們每個(gè)人都能發(fā)表自己意見,在不同意見的交流融合中,會(huì)有很多在教學(xué)內(nèi)容上的奇思妙想。就比如說(shuō)老師在課堂上曾經(jīng)讓我們探討過(guò)這樣的一個(gè)問(wèn)題:是否任意一個(gè)已知有限項(xiàng)數(shù)列都有其通項(xiàng)公式,這個(gè)通項(xiàng)公式又是否唯一的?剛開始同學(xué)都是嘗試舉反面例子來(lái)進(jìn)行例證如1,0,—1,0,……,它的通項(xiàng)公式:當(dāng)n=4k—1,Bn=—1;n=4k+1時(shí),Bn=1;其他情況,Bn=0;但除此之外我們也可以用余弦函數(shù)或正弦函數(shù)表示,由此猜想數(shù)列通項(xiàng)公式是不唯一的。這就為接下來(lái)的引理論證做了鋪墊。最后通過(guò)縝密的邏輯可以論證猜想成立,原來(lái)我們是可以通過(guò)有限數(shù)列構(gòu)造出表達(dá)式為 一元多項(xiàng)式的通項(xiàng)公式。這個(gè)探討的過(guò)程讓我認(rèn)識(shí)到了高等數(shù)學(xué)課程在知識(shí)上是中學(xué)數(shù)學(xué)的繼續(xù)和提高,在思想方法上是中學(xué)數(shù)學(xué)的因襲和擴(kuò)張,在觀念上是中學(xué)數(shù)學(xué)的深化和發(fā)展,讓我深刻的感悟到了數(shù)學(xué)的魅力和神奇。下面是一些我對(duì)本課程的一些心得體會(huì)。
首先我認(rèn)為:現(xiàn)代數(shù)學(xué)與中學(xué)數(shù)學(xué)在知識(shí)聯(lián)系上是非常緊密的。初等數(shù)學(xué)是對(duì)特例、常量的研究,而高等數(shù)學(xué)是對(duì)變量的研究,所以中學(xué)數(shù)學(xué)的知識(shí)從某一程度上可以理解為高等數(shù)學(xué)的特例。可以看到現(xiàn)代數(shù)學(xué)和初等數(shù)學(xué)在很多知識(shí)點(diǎn)方面都存在著聯(lián)系:第一,中學(xué)代數(shù)給出了多項(xiàng)式因式分解的常用方法,高等代數(shù)首先用不可約多項(xiàng)式的嚴(yán)格定義解釋了不可再分的含義,接著給出了不可約多項(xiàng)式的性質(zhì)、因式分解定理及不可約多項(xiàng)式在三種數(shù)域上的判定;
第二,中學(xué)代數(shù)講二元一次、三元一次方程組的消元解法,高等代數(shù)講線性方程組的行列式解法,矩陣消元解法,講線性方程組解的判定及解與解之間的關(guān)系;此外,我認(rèn)為現(xiàn)代數(shù)學(xué)與中學(xué)數(shù)學(xué)具有思想上的統(tǒng)一性。眾所周知“數(shù)學(xué)是思維的體操”,小學(xué)從具體事物的數(shù)量中抽象出數(shù)字,開創(chuàng)了算術(shù)運(yùn)算的時(shí)期;中學(xué)用字母表示數(shù),開創(chuàng)了在一般形式下研究數(shù)式方程的時(shí)期;大學(xué)所學(xué)的高等代數(shù)用字母表示多項(xiàng)式矩陣,開始研究具體的代數(shù)系統(tǒng),進(jìn)而又用字母表示滿足一定公理體系的抽象元素,開始研究抽象的代數(shù)系統(tǒng)。向量空間、歐氏空間,這些都隨著概念抽象化程度得不斷地提高,數(shù)學(xué)研究的對(duì)象急劇擴(kuò)大。從中學(xué)數(shù)學(xué)到現(xiàn)代數(shù)學(xué)的學(xué)習(xí),需要學(xué)生掌握的不只是一個(gè)個(gè)知識(shí)點(diǎn),更多的是數(shù)學(xué)思想方法:轉(zhuǎn)化與化歸思想,分類討論思想,數(shù)形結(jié)合思想,函數(shù)與方程思想等。高等代數(shù)與中學(xué)數(shù)學(xué)雖然在知識(shí)深度上有較大差昇,但課程所體現(xiàn)的數(shù)學(xué)思想方法卻是一脈相承的。
總而言之,這一個(gè)學(xué)期的學(xué)習(xí)讓我明白了:現(xiàn)代數(shù)學(xué)可以解決中學(xué)數(shù)學(xué)無(wú)法解答的問(wèn)題,它有助于初等數(shù)學(xué)和高等數(shù)學(xué)的融會(huì)貫通,建立數(shù)學(xué)還緝性思維的思考方式。數(shù)學(xué)思想和數(shù)學(xué)方法是人類思維的結(jié)晶,它們支配者數(shù)學(xué)的實(shí)踐活動(dòng),因此在今后的教學(xué)之路上,我不僅要做好知識(shí)的教導(dǎo)者,激發(fā)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣,更要幫助學(xué)生們建立正確的數(shù)學(xué)思想和數(shù)學(xué)方法,為他們今后在數(shù)學(xué)求知路上的進(jìn)一步飛躍奠定堅(jiān)實(shí)的知識(shí)基礎(chǔ)。
幼師資料《高等代數(shù)課件(匯編三篇)》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專門為給您提供幼師資料而創(chuàng)建的網(wǎng)站。同時(shí),yjs21.com還為您精選準(zhǔn)備了代數(shù)式課件專題,希望您能喜歡!
相關(guān)推薦
經(jīng)驗(yàn)告訴我們,成功是留給有準(zhǔn)備的人。作為一幼兒園的老師,我們需要讓小朋友們學(xué)到知識(shí),大部分的教案都是為了讓學(xué)生的學(xué)習(xí)效率得到提升,教案有利于老師在課堂上與學(xué)生更好的交流。幼兒園教案的內(nèi)容具體要怎樣寫呢?在這里,你不妨讀讀高一數(shù)學(xué)課件,僅供參考,希望能為你提供參考!注重發(fā)展學(xué)生的創(chuàng)新意識(shí)。學(xué)生的數(shù)學(xué)學(xué)...
每個(gè)老師都需要在課前準(zhǔn)備好自己的教案課件,本學(xué)期又到了寫教案課件的時(shí)候了。?教師應(yīng)該在教案課件中充分展示,讓學(xué)生理解和掌握知識(shí)。我在教育網(wǎng)上找到一篇關(guān)于“高等數(shù)學(xué)課件”的文章內(nèi)容很詳盡,希望這些知識(shí)能夠?qū)δ阌兴鶐椭?..
對(duì)于初來(lái)職場(chǎng)的教師而言,制作精良的教案與課件仍是不可或缺的,他們需要花費(fèi)心思來(lái)精心設(shè)計(jì)。高水平教案和課件則是課堂教學(xué)最亮眼的一道風(fēng)景線。為了方便查閱,本站整理了許多“新時(shí)代課件”相關(guān)資源,期盼您能在這里有所收獲!...
我們?yōu)槟暨x特別的“等差數(shù)列課件”,保證讓您連連驚喜。老師們?cè)谡缴险n之前需要精心準(zhǔn)備這個(gè)學(xué)期的教學(xué)教案課件,每個(gè)老師都要認(rèn)真思考自己的教案課件。一個(gè)出色的教案是實(shí)現(xiàn)教學(xué)目標(biāo)和落實(shí)教學(xué)內(nèi)容的必不可少的工具。請(qǐng)務(wù)必將這篇文章收藏好,下次再讀。...
今天幼兒教師教育網(wǎng)小編要向大家推薦的是一篇名為“對(duì)數(shù)課件”的文章。教案是老師上課之前需要備好的課件,每個(gè)老師都需要仔細(xì)規(guī)劃教案課件。?學(xué)生反應(yīng)可以幫助教師定位課堂的優(yōu)勢(shì)和劣勢(shì)。希望這些建議有助于你在團(tuán)隊(duì)協(xié)作中更加高效!...
最新更新