高中數(shù)學教案。
在我看來《高中數(shù)學教案》是眾多文章中的絕美之作。在老師日常工作中,教案課件也是其中一種,不過教案課件里知識點要設(shè)計好。教案是為加強教育教學團隊建設(shè)和職業(yè)發(fā)展提供的有效支持。歡迎你參考,希望對你有所助益!
教材分析:
三角函數(shù)的誘導(dǎo)公式是普通高中課程標準實驗教科書(人教B版)數(shù)學必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時,教學內(nèi)容是公式(三)。教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關(guān)系,進而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法。
教案背景:
通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關(guān)系,進而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
教學方法:
以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學模式。
教學目標:
借助單位圓探究誘導(dǎo)公式。
能正確運用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
教學重點:
誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。
教學難點:
誘導(dǎo)公式的應(yīng)用。
教學手段:
多媒體。
教學情景設(shè)計:
一.復(fù)習回顧:
1. 誘導(dǎo)公式(一)(二)。
2. 角 (終邊在一條直線上)
3. 思考:下列一組角有什么特征?( )能否用式子來表示?
二.新課:
已知 由
可知
而 (課件演示,學生發(fā)現(xiàn))
所以
于是可得: (三)
設(shè)計意圖:結(jié)合幾何畫板的演示利用同一點的坐標變換,導(dǎo)出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。
設(shè)計意圖:結(jié)合學過的公式(一)(二),發(fā)現(xiàn)特點,總結(jié)公式。
1. 練習
(1)
設(shè)計意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
(學生板演,老師點評,用彩色粉筆強調(diào)重點,引導(dǎo)學生總結(jié)公式。)
三.例題
例3:求下列各三角函數(shù)值:
(1)
(2)
(3)
(4)
例4:化簡
設(shè)計意圖:利用公式解決問題。
練習:
(1)
(2) (學生板演,師生點評)
設(shè)計意圖:觀察公式特點,選擇公式解決問題。
四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學生分析問題、解決問題的能力,熟練應(yīng)用解決問題。
五.課后作業(yè):課后練習A、B組
六.課后反思與交流
很榮幸大家來聽我的課,通過這課,我學習到如下的東西:
1.要認真的研讀新課標,對教學的目標,重難點把握要到位
2.注意板書設(shè)計,注重細節(jié)的東西,語速需要改正
3.進一步的學習網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學生更容易操作
4.盡可能讓你的學生自主提出問題,自主的思考,能夠化被動學習為主動學習,充分享受學習數(shù)學的樂趣
5.上課的生動化,形象化需要加強
聽課者評價:
1.評議者:網(wǎng)絡(luò)輔助教學,起到了很好的效果;教態(tài)大方,作為新教師,開設(shè)校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的,相信效果會更好的!重點不夠清晰,有引導(dǎo)數(shù)學時,最好值有個側(cè)重點;網(wǎng)絡(luò)設(shè)計上,網(wǎng)頁上公開的推導(dǎo)公式為上,留有更大的空間讓學生來思考。
2.評議者:網(wǎng)絡(luò)教學效果良好,給學生自主思考,學習的空間發(fā)揮,教學設(shè)計得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚頓挫應(yīng)注意課堂例題練習可以多兩題。
3.評議者:學科網(wǎng)絡(luò)平臺的使用;建議:應(yīng)重視引導(dǎo)學生將一些唾手可得的有用結(jié)論總結(jié)出來,并形成自我的經(jīng)驗。
4.評議者:引導(dǎo)學生通過網(wǎng)絡(luò)進行探究。
建議:課件制作在線測評部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測試;多提問學生。
( 1)給學生思考的時間較長,語調(diào)相對平緩,總結(jié)時,給學生一些激勵的語言更好
( 2)這樣子的教學可以提高上課效率,讓學生更多的時間思考
( 3)網(wǎng)絡(luò)平臺的使用,使得學生的參與度明顯提高,存在問題:1.公式對稱性的誘導(dǎo),點與點的對稱的誘導(dǎo),終邊的關(guān)系的誘導(dǎo),要進一步的修正;2.公式的概括要注意引導(dǎo)學生怎么用,學習這個誘導(dǎo)公式的作用
( 4)給學生答案,這個網(wǎng)頁要進一步的修正,答案能否不要一點就出來
( 5)1.板書設(shè)計要進一步的加強,2.語速相對是比較快的3.練習量比較少
( 6)讓學生多探究,課堂會更熱鬧
( 7)注意引入的過程要帶有目的,帶著問題來教學,學生帶著問題來學習
( 8)教學模式相對簡單重復(fù)
( 9)思路較為清晰,規(guī)范化的推理
【教學目標】
1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
2.能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
3.提高學生的觀察能力;培養(yǎng)學生的空間想象能力和抽象括能力。
【教學重難點】
教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
教學難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
【教學過程】
1.情景導(dǎo)入
教師提出問題,引導(dǎo)學生觀察、舉例和相互交流,提出本節(jié)課所學內(nèi)容,出示課題。
2.展示目標、檢查預(yù)習
3.合作探究、交流展示
(1)引導(dǎo)學生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?
(2)組織學生分組討論,每小組選出一名同學發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。有兩個面互相平行;其余各面都是平行四邊形;每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
(3)提出問題:請列舉身邊的棱柱并對它們進行分類
(4)以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
(5)讓學生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。
(6)引導(dǎo)學生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學生思考、討論、概括。
(7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。
(1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)
(2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?
(3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
(4)棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?
5.典型例題
例:判斷下列語句是否正確。
⑴有一個面是多邊形,其余各面都是三角形的幾何體是棱錐。
⑵有兩個面互相平行,其余各面都是梯形,則此幾何體是棱柱。
答案AB
6.課堂檢測:
課本P8,習題1.1A組第1題。
7.歸納整理
由學生整理學習了哪些內(nèi)容
1.1.1 任意角
教學目標
(一) 知識與技能目標
理解任意角的概念(包括正角、負角、零角) 與區(qū)間角的概念.
(二) 過程與能力目標
會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫.
(三) 情感與態(tài)度目標
1. 提高學生的推理能力;
2.培養(yǎng)學生應(yīng)用意識. 教學重點
任意角概念的理解;區(qū)間角的集合的書寫. 教學難點
終邊相同角的集合的表示;區(qū)間角的集合的書寫.
教學過程
一、引入:
1.回顧角的定義
①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角.
②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形.
二、新課:
1.角的有關(guān)概念:
①角的定義:
角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形.
②角的名稱:
③角的分類: A
正角:按逆時針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角
負角:按順時針方向旋轉(zhuǎn)形成的角
④注意:
⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;
⑵零角的終邊與始邊重合,如果α是零角α =0°;
⑶角的概念經(jīng)過推廣后,已包括正角、負角和零角.
⑤練習:請說出角α、β、γ各是多少度?
2.象限角的概念:
①定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角.
例1.在直角坐標系中,作出下列各角,并指出它們是第幾象限的角.
⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分別為1、2、3、4、1、2象限角.
3.探究:教材P3面
終邊相同的角的表示:
所有與角α終邊相同的角,連同α在內(nèi),可構(gòu)成一個集合S={ β | β = α +
k·360° ,
k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個周角的和. 注意: ⑴ k∈Z
⑵ α是任一角;
⑶ 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個,它們相差
360°的整數(shù)倍;
⑷ 角α + k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.
例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.
⑴-120°;
⑵640°;
⑶-950°12’.
答:⑴240°,第三象限角;
⑵280°,第四象限角;
⑶129°48’,第二象限角;
例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.
例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來.
4.課堂小結(jié)
①角的定義;
②角的分類:
正角:按逆時針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角
負角:按順時針方向旋轉(zhuǎn)形成的角
③象限角;
④終邊相同的角的表示法.
5.課后作業(yè):
①閱讀教材P2-P5;
②教材P5練習第1-5題;
③教材P.9習題1.1第1、2、3題 思考題:已知α角是第三象限角,則2α,
解:??角屬于第三象限,
? k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)
故2α是第一、二象限或終邊在y軸的非負半軸上的角. 又k·180°+90°<
各是第幾象限角?
<k·180°+135°(k∈Z) .
<n·360°+135°(n∈Z) ,
當k為偶數(shù)時,令k=2n(n∈Z),則n·360°+90°<此時,
屬于第二象限角
<n·360°+315°(n∈Z) ,
當k為奇數(shù)時,令k=2n+1 (n∈Z),則n·360°+270°<此時,
屬于第四象限角
因此
屬于第二或第四象限角.
1.1.2弧度制
(一)
教學目標
(二) 知識與技能目標
理解弧度的意義;了解角的集合與實數(shù)集R之間的可建立起一一對應(yīng)的關(guān)系;熟記特殊角的弧度數(shù).
(三) 過程與能力目標
能正確地進行弧度與角度之間的換算,能推導(dǎo)弧度制下的弧長公式及扇形的面積公式,并能運用公式解決一些實際問題
(四) 情感與態(tài)度目標
通過新的度量角的單位制(弧度制)的引進,培養(yǎng)學生求異創(chuàng)新的精神;通過對弧度制與角度制下弧長公式、扇形面積公式的對比,讓學生感受弧長及扇形面積公式在弧度制下的簡潔美. 教學重點
弧度的概念.弧長公式及扇形的面積公式的推導(dǎo)與證明. 教學難點
“角度制”與“弧度制”的區(qū)別與聯(lián)系.
教學過程
一、復(fù)習角度制:
初中所學的角度制是怎樣規(guī)定角的度量的? 規(guī)定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.
二、新課:
1.引 入:
由角度制的定義我們知道,角度是用來度量角的, 角度制的度量是60進制的,運用起來不太方便.在數(shù)學和其他許多科學研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?
2.定 義
我們規(guī)定,長度等于半徑的弧所對的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實際運算中,常常將rad單位省略.
3.思考:
(1)一定大小的圓心角?所對應(yīng)的弧長與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?
(2)引導(dǎo)學生完成P6的探究并歸納: 弧度制的性質(zhì):
①半圓所對的圓心角為
②整圓所對的圓心角為
③正角的弧度數(shù)是一個正數(shù).
④負角的弧度數(shù)是一個負數(shù).
⑤零角的弧度數(shù)是零.
⑥角α的弧度數(shù)的絕對值|α|= .
4.角度與弧度之間的轉(zhuǎn)換:
①將角度化為弧度:
②將弧度化為角度:
5.常規(guī)寫法:
① 用弧度數(shù)表示角時,常常把弧度數(shù)寫成多少π 的形式, 不必寫成小數(shù).
② 弧度與角度不能混用.
弧長等于弧所對應(yīng)的圓心角(的弧度數(shù))的絕對值與半徑的積.yjS21.com
例1.把67°30’化成弧度.
例2.把? rad化成度.
例3.計算:
(1)sin4
(2)tan1.5.
8.課后作業(yè):
①閱讀教材P6 –P8;
②教材P9練習第1、2、3、6題;
③教材P10面7、8題及B2、3題.
教學目標
1.掌握等差數(shù)列前 項和的公式,并能運用公式解決簡單的問題.
(1)了解等差數(shù)列前 項和的定義,了解逆項相加的原理,理解等差數(shù)列前 項和公式推導(dǎo)的過程,記憶公式的兩種形式;
(2)用方程思想認識等差數(shù)列前 項和的公式,利用公式求 ;等差數(shù)列通項公式與前 項和的公式兩套公式涉及五個字母,已知其中三個量求另兩個值;
(3)會利用等差數(shù)列通項公式與前 項和的公式研究 的最值.
2.通過公式的推導(dǎo)和公式的運用,使學生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認識問題,解決問題的一般思路和方法.
3.通過公式推導(dǎo)的過程教學,對學生進行思維靈活性與廣闊性的訓練,發(fā)展學生的思維水平.
4.通過公式的推導(dǎo)過程,展現(xiàn)數(shù)學中的對稱美;通過有關(guān)內(nèi)容在實際生活中的應(yīng)用,使學生再一次感受數(shù)學源于生活,又服務(wù)于生活的實用性,引導(dǎo)學生要善于觀察生活,從生活中發(fā)現(xiàn)問題,并數(shù)學地解決問題.
教學建議
(1)知識結(jié)構(gòu)
本節(jié)內(nèi)容是等差數(shù)列前 項和公式的推導(dǎo)和應(yīng)用,首先通過具體的例子給出了求等差數(shù)列前 項和的思路,而后導(dǎo)出了一般的公式,并加以應(yīng)用;再與等差數(shù)列通項公式組成方程組,共同運用,解決有關(guān)問題.
(2)重點、難點分析
教學重點是等差數(shù)列前 項和公式的推導(dǎo)和應(yīng)用,難點是公式推導(dǎo)的思路.
推導(dǎo)過程的展示體現(xiàn)了人類解決問題的一般思路,即從特殊問題的解決中提煉一般方法,再試圖運用這一方法解決一般情況,所以推導(dǎo)公式的過程中所蘊含的思想方法比公式本身更為重要.等差數(shù)列前 項和公式有兩種形式,應(yīng)根據(jù)條件選擇適當?shù)男问竭M行計算;另外反用公式、變用公式、前 項和公式與通項公式的綜合運用體現(xiàn)了方程(組)思想.
高斯算法表現(xiàn)了大數(shù)學家的智慧和巧思,對一般學生來說有很大難度,但大多數(shù)學生都聽說過這個故事,所以難點在于一般等差數(shù)列求和的思路上.
(3)教法建議
①本節(jié)內(nèi)容分為兩課時,一節(jié)為公式推導(dǎo)及簡單應(yīng)用,一節(jié)側(cè)重于通項公式與前 項和公式綜合運用.
②前 項和公式的推導(dǎo),建議由具體問題引入,使學生體會問題源于生活.
③強調(diào)從特殊到一般,再從一般到特殊的思考方法與研究方法.
④補充等差數(shù)列前 項和的值、最小值問題.
⑤用梯形面積公式記憶等差數(shù)列前 項和公式.
等差數(shù)列的前項和公式教學設(shè)計示例
教學目標
1.通過教學使學生理解等差數(shù)列的前 項和公式的推導(dǎo)過程,并能用公式解決簡單的問題.
2.通過公式推導(dǎo)的教學使學生進一步體會從特殊到一般,再從一般到特殊的思想方法,通過公式的運用體會方程的思想.
教學重點,難點
教學重點是等差數(shù)列的前 項和公式的推導(dǎo)和應(yīng)用,難點是獲得推導(dǎo)公式的思路.
教學用具
實物投影儀,多媒體軟件,電腦.
教學方法
講授法.
教學過程
一.新課引入
提出問題(播放媒體資料):一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個V形架上共放著多少支鉛筆?(課件設(shè)計見課件展示)
問題就是(板書)“ ”
這是小學時就知道的一個故事,高斯的算法非常高明,回憶他是怎樣算的.(由一名學生回答,再由學生討論其高明之處)高斯算法的高明之處在于他發(fā)現(xiàn)這100個數(shù)可以分為50組,第一個數(shù)與最后一個數(shù)一組,第二個數(shù)與倒數(shù)第二個數(shù)一組,第三個數(shù)與倒數(shù)第三個數(shù)一組,…,每組數(shù)的和均相等,都等于101,50個101就等于5050了.高斯算法將加法問題轉(zhuǎn)化為乘法運算,迅速準確得到了結(jié)果.
我們希望求一般的等差數(shù)列的和,高斯算法對我們有何啟發(fā)?
二.講解新課
(板書)等差數(shù)列前 項和公式
1.公式推導(dǎo)(板書)
問題(幻燈片):設(shè)等差數(shù)列 的首項為 ,公差為 , 由學生討論,研究高斯算法對一般等差數(shù)列求和的指導(dǎo)意義.
思路一:運用基本量思想,將各項用 和 表示,得
,有以下等式
,問題是一共有多少個 ,似乎與 的奇偶有關(guān).這個思路似乎進行不下去了.
思路二:
上面的等式其實就是 ,為回避個數(shù)問題,做一個改寫 , ,兩式左右分別相加,得
,
于是有: .這就是倒序相加法.
思路三:受思路二的啟發(fā),重新調(diào)整思路一,可得 ,于是 .
于是得到了兩個公式(投影片): 和 .
2.公式記憶
用梯形面積公式記憶等差數(shù)列前 項和公式,這里對圖形進行了割、補兩種處理,對應(yīng)著等差數(shù)列前 項和的兩個公式.
3.公式的應(yīng)用
公式中含有四個量,運用方程的思想,知三求一.
例1.求和:(1) ;
(2) (結(jié)果用 表示)
解題的關(guān)鍵是數(shù)清項數(shù),小結(jié)數(shù)項數(shù)的方法.
例2.等差數(shù)列 中前多少項的和是9900?
本題實質(zhì)是反用公式,解一個關(guān)于 的一元二次函數(shù),注意得到的項數(shù) 必須是正整數(shù).
三.小結(jié)
1.推導(dǎo)等差數(shù)列前 項和公式的思路;
2.公式的應(yīng)用中的數(shù)學思想.
四.板書設(shè)計
[學習目標]
(1)會用坐標法及距離公式證明Cα+β;
(2)會用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實理解上述公式間的關(guān)系與相互轉(zhuǎn)化;
(3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
[學習重點]
兩角和與差的正弦、余弦、正切公式
[學習難點]
余弦和角公式的推導(dǎo)
[知識結(jié)構(gòu)]
1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標法,利用三角函數(shù)定義及平面內(nèi)兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)
2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當α、β中有一個是的整數(shù)倍時,應(yīng)首選誘導(dǎo)公式進行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。
4、關(guān)于公式的正用、逆用及變用
教學目標:
1.結(jié)合實際問題情景,理解分層抽樣的必要性和重要性;
2.學會用分層抽樣的方法從總體中抽取樣本;
3.并對簡單隨機抽樣、系統(tǒng)抽樣及分層抽樣方法進行比較,揭示其相互關(guān)系.
教學重點:
通過實例理解分層抽樣的方法.
教學難點:
分層抽樣的步驟.
教學過程:
一、問題情境
1.復(fù)習簡單隨機抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.
2.實例:某校高一、高二和高三年級分別有學生名,為了了解全校學生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?
二、學生活動
能否用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣,為什么?
指出由于不同年級的學生視力狀況有一定的差異,用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣不能準確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性.
由于樣本的容量與總體的個體數(shù)的比為100∶2500=1∶25,
所以在各年級抽取的個體數(shù)依次是,,,即40,32,28.
三、建構(gòu)數(shù)學
1.分層抽樣:當已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.
說明:①分層抽樣時,由于各部分抽取的個體數(shù)與這一部分個體數(shù)的比等于樣本容量與總體的個體數(shù)的比,每一個個體被抽到的可能性都是相等的;
②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應(yīng)用.
2.三種抽樣方法對照表:
類別
共同點
各自特點
相互聯(lián)系
適用范圍
簡單隨機抽樣
抽樣過程中每個個體被抽取的概率是相同的
從總體中逐個抽取
總體中的個體數(shù)較少
系統(tǒng)抽樣
將總體均分成幾個部分,按事先確定的規(guī)則在各部分抽取
在第一部分抽樣時采用簡單隨機抽樣
總體中的個體數(shù)較多
分層抽樣
將總體分成幾層,分層進行抽取
各層抽樣時采用簡單隨機抽樣或系統(tǒng)
總體由差異明顯的幾部分組成
3.分層抽樣的步驟:
(1)分層:將總體按某種特征分成若干部分.
(2)確定比例:計算各層的個體數(shù)與總體的個體數(shù)的比.
(3)確定各層應(yīng)抽取的樣本容量.
(4)在每一層進行抽樣(各層分別按簡單隨機抽樣或系統(tǒng)抽樣的方法抽?。?,綜合每層抽樣,組成樣本.
四、數(shù)學運用
1.例題.
例1(1)分層抽樣中,在每一層進行抽樣可用_________________.
(2)①教育局督學組到學校檢查工作,臨時在每個班各抽調(diào)2人參加座談;
②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進一步改進教和學;
③某班元旦聚會,要產(chǎn)生兩名“幸運者”.
對這三件事,合適的抽樣方法為()
A.分層抽樣,分層抽樣,簡單隨機抽樣
B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣
C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣
D.系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣
例2某電視臺在因特網(wǎng)上就觀眾對某一節(jié)目的喜愛程度進行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:
很喜愛
喜愛
一般
不喜愛
2435
4567
3926
1072
電視臺為進一步了解觀眾的具體想法和意見,打算從中抽取60人進行更為詳細的調(diào)查,應(yīng)怎樣進行抽樣?
解:抽取人數(shù)與總的比是60∶12000=1∶200,
則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,
取近似值得各層人數(shù)分別是12,23,20,5.
然后在各層用簡單隨機抽樣方法抽?。?/p>
答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人
數(shù)分別為12,23,20,5.
說明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對于不能取整數(shù)的情況,取其近似值.
(3)某學校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學校在校務(wù)公開方面的某意見,擬抽取一個容量為20的樣本.
分析:(1)總體容量較小,用抽簽法或隨機數(shù)表法都很方便.
(2)總體容量較大,用抽簽法或隨機數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.
(3)由于學校各類人員對這一問題的看法可能差異較大,所以應(yīng)采用分層抽樣方法.
五、要點歸納與方法小結(jié)
本節(jié)課學習了以下內(nèi)容:
1.分層抽樣的概念與特征;
2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.
幼兒教師教育網(wǎng)的幼兒園教案頻道為您編輯的《高中數(shù)學教案6篇》內(nèi)容,希望能幫到您!同時我們的高中數(shù)學教案專題還有需要您想要的內(nèi)容,歡迎您訪問!
相關(guān)推薦
小兒無知進學校,老師耐心把手教。制作一份教案是非常有必要的。教案應(yīng)該具有科學性,創(chuàng)新性,差異性和可操作性的。我們可以怎么樣去寫教案?急你所急,小編為朋友們了收集和編輯了“高一數(shù)學教學反思”,我們后續(xù)還將不斷提供這方面的內(nèi)容。...
一、活動內(nèi)容:比較高矮 二、活動目標 1、嘗試用目測的方法比較高矮,知道要在同一平面上比較高矮。 2、感知高矮的相對性。 3、樂意參與比較高矮操作并用語言交流表達出來。 配套課件:中班數(shù)學課件《比高矮...
活動目標: 1、激發(fā)幼兒學習數(shù)的興趣。 2、鍛煉幼兒的思維能力和手口一致的點數(shù)能力。 3、認識數(shù)字6、學習6的形成、理解6的真實含義。 4、引導(dǎo)幼兒積極與材料互動,體驗數(shù)學活動的樂趣。 5、引發(fā)幼兒學...
幼兒園中班數(shù)學教案:復(fù)習6以內(nèi)數(shù)數(shù)、認數(shù) 活動目的: 1、復(fù)習6以內(nèi)數(shù)數(shù)及認數(shù),能手口一致點數(shù),學習按數(shù)取物。 2、培養(yǎng)幼兒的觀察力和思維力。 活動重點:能手口一致點數(shù);知道數(shù)字代表的實際數(shù)量 活動難...
活動目標: 1、幼兒學習目測數(shù)群,能不受物體排列形式的影響,正確感知6以內(nèi)的數(shù)量。 2、讓幼兒學會數(shù)屋匹配。 3、引導(dǎo)幼兒用完整的語言來表達自己的操作過程。 4、培養(yǎng)幼兒比較和判斷的能力。 5、發(fā)展幼...
最新更新