二元一次方程課件教案。
前輩告訴我們,做事之前提前下功夫是成功的一部分。身為一位人民教師,我們都希望孩子們能學(xué)到知識(shí),為了將學(xué)生的效率提上來(lái),老師會(huì)準(zhǔn)備一份教案,教案有助于讓同學(xué)們很好的吸收課堂上所講的知識(shí)點(diǎn)。你知道如何去寫(xiě)好一份優(yōu)秀的幼兒園教案呢?小編特別從網(wǎng)絡(luò)上整理了二元一次方程課件教案(合集12篇),相信會(huì)對(duì)你有所幫助!
知識(shí)要點(diǎn)
1、二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是一次的整式方程叫做~
2、二元一次方程的解:適合二元一次方程的一組未知數(shù)的值叫做這個(gè)二元一次方程的一個(gè)解;
3、二元一次方程組:由幾個(gè)一次方程組成并含有兩個(gè)未知數(shù)的方程組叫做二元一次方程組
4、二元一次方程組的解:適合二元一次方程組里各個(gè)方程的一對(duì)未知數(shù)的值,叫做這個(gè)方程組里各個(gè)方程的公共解,也叫做這個(gè)方程組的解(注意:①書(shū)寫(xiě)方程組的解時(shí),必需用“”把各個(gè)未知數(shù)的值連在一起,即寫(xiě)成的形式;②一元方程的解也叫做方程的根,但是方程組的解只能叫解,不能叫根)
5、解方程組:求出方程組的解或確定方程組沒(méi)有解的過(guò)程叫做解方程組
6、解二元一次方程組的基本方法是代入消元法和加減消元法(簡(jiǎn)稱代入法和加減法)
(1)代入法解題步驟:把方程組里的一個(gè)方程變形,用含有一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù);把這個(gè)代數(shù)式代替另一個(gè)方程中相應(yīng)的未知數(shù),得到一個(gè)一元一次方程,可先求出一個(gè)未知數(shù)的值;把求得的這個(gè)未知數(shù)的值代入第一步所得的式子中,可求得另一個(gè)未知數(shù)的值,這樣就得到了方程的解
(2)加減法解題步驟:把方程組里一個(gè)(或兩個(gè))方程的兩邊都乘以適當(dāng)?shù)臄?shù),使兩個(gè)方程里的某一個(gè)未知數(shù)的系數(shù)的絕對(duì)值相等;把所得到的兩個(gè)方程的兩邊分別相加(或相減),消去一個(gè)未知數(shù),得到含另一個(gè)未知數(shù)的一元一次方程(以下步驟與代入法相同)
一、例題精講
分別用代入法和加減法解方程組
解:代入法:由方程②得:③
將方程③代入方程①得:
解得x=2
將x=2代入方程②得:4-3y=1
解得y=1
所以方程組的解為
加減法:
例2.從少先隊(duì)夏令營(yíng)到學(xué)校,先下山再走平路,一少先隊(duì)員騎自行車以每小時(shí)12公里的速度下山,以每小時(shí)9公里的速度通過(guò)平路,到學(xué)校共用了55分鐘,回來(lái)時(shí),通過(guò)平路速度不變,但以每小時(shí)6公里的速度上山,回到營(yíng)地共花去了1小時(shí)10分鐘,問(wèn)夏令營(yíng)到學(xué)校有多少公里?
分析:路程分為兩段,平路和坡路,來(lái)回路程不變,只是上山和下山的轉(zhuǎn)變導(dǎo)致時(shí)間的不同,所以設(shè)平路長(zhǎng)為x公里,坡路長(zhǎng)為y公里,表示時(shí)間,利用兩個(gè)不同的過(guò)程列兩個(gè)方程,組成方程組
解:設(shè)平路長(zhǎng)為x公里,坡路長(zhǎng)為y公里
依題意列方程組得:
解這個(gè)方程組得:
經(jīng)檢驗(yàn),符合題意
x+y=9
答:夏令營(yíng)到學(xué)校有9公里二、課堂小結(jié):
回顧本章內(nèi)容,總結(jié)二元一次方程組的解法和應(yīng)用。
三、作業(yè)布置:
P25A組習(xí)題
教學(xué)目標(biāo):
1.會(huì)用加減消元法解二元一次方程組.
2.能根據(jù)方程組的特點(diǎn),適當(dāng)選用代入消元法和加減消元法解二元一次方程組.
3.了解解二元一次方程組的消元方法,經(jīng)歷從“二元”到“一元”的轉(zhuǎn)化過(guò)程,體會(huì)解二元一次方程組中化“未知”為“已知”的“轉(zhuǎn)化”的思想方法.
教學(xué)重點(diǎn):
加減消元法的理解與掌握
教學(xué)難點(diǎn):
加減消元法的靈活運(yùn)用
教學(xué)方法:
引導(dǎo)探索法,學(xué)生討論交流
教學(xué)過(guò)程:
一、情境創(chuàng)設(shè)
買(mǎi)3瓶蘋(píng)果汁和2瓶橙汁共需要23元,買(mǎi)5瓶蘋(píng)果汁和2瓶橙汁共需33元,每瓶蘋(píng)果汁和每瓶橙汁售價(jià)各是多少?
設(shè)蘋(píng)果汁、橙汁單價(jià)為x元,y元。
我們可以列出方程3x+2y=23
5x+2y=33
問(wèn):如何解這個(gè)方程組?
二、探索活動(dòng)
活動(dòng)一:1、上面“情境創(chuàng)設(shè)”中的方程,除了用代入消元法解以外,還有其他方法求解嗎?
2、這些方法與代入消元法有何異同?
3、這個(gè)方程組有何特點(diǎn)?
解法一:3x+2y=23①
5x+2y=33②
由①式得③
把③式代入②式
33
解這個(gè)方程得:y=4
把y=4代入③式
則
所以原方程組的解是x=5
y=4
解法二:3x+2y=23①
5x+2y=33②
由①—②式:
3x+2y-(5x+2y)=23-33
3x-5x=-10
解這個(gè)方程得:x=5
把x=5代入①式,
3×5+2y=23
解這個(gè)方程得y=4
所以原方程組的解是x=5
y=4
把方程組的兩個(gè)方程(或先作適當(dāng)變形)相加或相減,消去其中一個(gè)未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解方程組的方法叫做加減消元法,簡(jiǎn)稱加減法.
三、例題教學(xué):
例1.解方程組x+2y=1①
3x-2y=5②
解:①+②得,4x=6
將代入①,得
解這個(gè)方程得:
所以原方程組的解是
鞏固練習(xí)(一):練一練1.(1)
例2.解方程組5x-2y=4①
2x-3y=-5②
解:①×3,得
15x-6y=12③
②×3,得
4x-6y=-10④
③—④,得:
11x=22
解這個(gè)方程得x=2
將x=2代入①,得
5×2-2y=4
解這個(gè)方程得:y=3
所以原方程組的解是x=2
y=3
鞏固練習(xí)(二):練一練1.(2)(3)(4)2
四、思維拓展:
解方程組:
五、小結(jié):
1、掌握加減消元法解二元一次方程組
2、靈活選用代入消元法和加減消元法解二元一次方程組
六、作業(yè)
習(xí)題10.31.(3)(4)2
各位評(píng)委、老師:
大家好!
我說(shuō)課的題目是《二元一次方程組的解法——代入消元法》,內(nèi)容選自人教版九年義務(wù)教育七年級(jí)數(shù)學(xué)下冊(cè)第八章第二節(jié)第一課時(shí)。
一、說(shuō)教材
(一)地位和作用
本節(jié)主要內(nèi)容是在上節(jié)已認(rèn)識(shí)二元一次方程(組)和二元一次方程(組)的解等概念的基礎(chǔ)上,來(lái)學(xué)習(xí)解方程組的第一種方法——代入消元法。并初步體會(huì)解二元一次方程組的基本思想“消元”。二元一次方程組的求解,不但用到了前面學(xué)過(guò)的一元一次方程的解法,是對(duì)過(guò)去所學(xué)知識(shí)的一個(gè)回顧和提高,同時(shí),也為后面的利用方程組來(lái)解決實(shí)際問(wèn)題打下了基礎(chǔ)。初中階段要掌握的二元一次方程組的解法有代入消元法和加減消元兩種,教材都是按先求解后應(yīng)用的順序安排,這樣安排既可以在前一小節(jié)中有針對(duì)性的學(xué)習(xí)解法,又可在后一小節(jié)的應(yīng)用中鞏固前面的知識(shí),但教材相對(duì)應(yīng)的練習(xí)安排很少,不過(guò)這樣也給了我們一較大的發(fā)揮空間。
(二)課程目標(biāo)
1、知識(shí)與技能目標(biāo)
(1)會(huì)用代入法解二元一次方程組
(2)初步體會(huì)解二元一次方程組的基本思想“消元”。
(3)通過(guò)對(duì)方程組中的未知數(shù)特點(diǎn)的觀察和分析,明確解二元一次方程組的主要思路是“消元”,從而促成由未知向已知轉(zhuǎn)化,培養(yǎng)學(xué)生觀察能力和體會(huì)化歸思想:
(4)通過(guò)用代入消元法解二元一次方程組的訓(xùn)練,及選用合理、簡(jiǎn)捷的方法解方程組,培養(yǎng)學(xué)生的運(yùn)算能力。
2、情感目標(biāo):
通過(guò)研究探討解決問(wèn)題的方法,培養(yǎng)學(xué)生會(huì)作交流意識(shí)與探究精神。
(三)教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):用代入消元法解二元一次方程組。
難點(diǎn):探索如何用代入消元法將“二元”轉(zhuǎn)化為“一元”的過(guò)程。
二、說(shuō)教法
針對(duì)本節(jié)特點(diǎn),在教學(xué)過(guò)程中采用自主、探究、合作交流的教學(xué)方法,由教師提出明確問(wèn)題,學(xué)生積極參與討論探究、合作交流,進(jìn)行總結(jié),使學(xué)生從中獲取知識(shí)。鑒于本節(jié)所學(xué)知識(shí)的特點(diǎn),抽象教學(xué)、學(xué)生生搬硬套的學(xué)習(xí)方式將難取得理想效果,因此教師在引入課題時(shí)要利用好遠(yuǎn)程教育設(shè)施及資源創(chuàng)設(shè)情境,讓學(xué)生去經(jīng)歷由具體問(wèn)題抽象出方程組的過(guò)程。并讓學(xué)生通過(guò)獨(dú)立觀察、合作交流來(lái)探討怎樣才能變“二元”為“一元”。然后利用單個(gè)二元一次方程的變形及時(shí)強(qiáng)化“代入”的本質(zhì)。
三、說(shuō)學(xué)法
本節(jié)學(xué)生在獨(dú)立思考、自主探究中學(xué)習(xí)并對(duì)老師的問(wèn)題展開(kāi)討論與交流。如何用代入消元法將“二元”轉(zhuǎn)化為“一元”學(xué)生較難掌握,在提出消元思想后,應(yīng)對(duì)具體的消元解法的過(guò)程進(jìn)行歸納,讓學(xué)生得到對(duì)代入法的基本步驟的概括,通過(guò)“把一個(gè)方程(必要時(shí)先做適當(dāng)變形)代入另一個(gè)方程”實(shí)現(xiàn)消元。應(yīng)注意引導(dǎo)學(xué)生認(rèn)識(shí)到為什么要實(shí)施這樣的步驟。把具體做法與消元結(jié)合,使學(xué)生明解其目的性。明確這樣做的依據(jù)是等量代換。七年級(jí)的學(xué)生已經(jīng)初步具備合作交流的能力。可以通過(guò)探究和合作來(lái)實(shí)現(xiàn)課程目標(biāo);此外,教學(xué)中,范例的講解和隨堂練習(xí)始終是學(xué)以對(duì)用的有效方法。隨堂練習(xí)時(shí)應(yīng)引導(dǎo)學(xué)生通過(guò)自我反省、小組評(píng)價(jià)來(lái)克服解題時(shí)的錯(cuò)誤,必要時(shí)給與規(guī)范矯正。
四、說(shuō)教學(xué)程序
本節(jié)課我將“自主、探究、合作、交流”運(yùn)用到教學(xué)中,教學(xué)過(guò)程可以劃分為以下幾個(gè)環(huán)節(jié):
1、引入新知:利用多媒體教學(xué)手段,創(chuàng)設(shè)情境,通過(guò)籃球比賽問(wèn)題引入教學(xué),情境活潑、自然。
2、探究新知:在籃球比賽問(wèn)題中,首先可以用一元一次方程來(lái)解決實(shí)際問(wèn)題,接著提出問(wèn)題:能否設(shè)出兩個(gè)未知數(shù),列出兩個(gè)方程組成方程組呢?(學(xué)生獨(dú)立思考后分組探究討論)。在學(xué)生得出正確的方程組之后提出問(wèn)題:怎樣解這個(gè)方程組呢?(學(xué)生分組討論,教師加以適當(dāng)?shù)囊龑?dǎo)),各組派代表得出自己的結(jié)論,教師適時(shí)引導(dǎo)“消元”思想,對(duì)消元解法的過(guò)程予以歸納。
⑴變形:將其中一個(gè)方程的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的式子表示。
⑵代入:將變形后的方程代入另一個(gè)方程中,消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程。
⑶求解:求出一元一次方程的解。
⑷回代:將其代入到變形后的方程中,求出另一個(gè)未知數(shù)的解。
⑸結(jié)論:寫(xiě)出方程組的解。
3、運(yùn)用新知:在得出“代入消元”解二元一次方程組后,應(yīng)用“代入消元法”解決實(shí)際問(wèn)題,在學(xué)生解題過(guò)程中著重強(qiáng)調(diào)、矯正、理清思路和步驟。然后師生一起“解后思”:在解題時(shí)應(yīng)注意什么?在隨堂練習(xí)時(shí)教師關(guān)鍵是反饋矯正、積極評(píng)價(jià)。
4、教學(xué)小結(jié),知識(shí)回顧:讓學(xué)生暢所欲言談本節(jié)課的得失,感到困惑和疑難的地方、解題的關(guān)鍵和步驟等。教師在學(xué)生發(fā)言的基礎(chǔ)上再進(jìn)行提煉:①解二元一次方程組的主要思路是“消元”;②解二元一次方程組的一般步驟是:一變形、二代入、三求解。
5、課外作業(yè)。為進(jìn)一步鞏固知識(shí),布置適當(dāng)?shù)?、具有代表性的作業(yè)。
教學(xué)建議
一、重點(diǎn)、難點(diǎn)分析
本節(jié)的教學(xué)重點(diǎn)是使學(xué)生學(xué)會(huì)用代入法.教學(xué)難點(diǎn)在于靈活運(yùn)用代入法,這要通過(guò)一定數(shù)量的練習(xí)來(lái)解決;另一個(gè)難點(diǎn)在于用代入法求出一個(gè)未知數(shù)的值后,不知道應(yīng)把它代入哪一個(gè)方程求另一個(gè)未知數(shù)的值比較簡(jiǎn)便.
解二元一次方程組的關(guān)鍵在于消元,即將“二元”轉(zhuǎn)化為“一元”.我們是通過(guò)等量代換的方法,消去一個(gè)未知數(shù),從而求得原方程組的解.
二、知識(shí)結(jié)構(gòu)
三、教法建議
1.關(guān)于檢驗(yàn)方程組的解的問(wèn)題.教材指出:“檢驗(yàn)時(shí),需將所求得的一對(duì)未知數(shù)的值分別代入原方程組里的每一個(gè)方程中,看看方程的左、右兩邊是不是相等.”教學(xué)時(shí)要強(qiáng)調(diào)“原方程組”和“每一個(gè)”這兩點(diǎn).檢驗(yàn)的作用,一是使學(xué)生進(jìn)一步明確代入法是求方程組的解的一種基本方法,通過(guò)代入消元的確可以求得方程組的解二是進(jìn)一步鞏固二元一次方程組的解的概念,強(qiáng)調(diào)
這一對(duì)數(shù)值才是原方程組的解,并且它們必須使兩個(gè)方程左、右兩邊的值都相等;三是因?yàn)槲覀儧](méi)有用方程組的同解原理而是用代換(等式的傳遞)來(lái)解方程組的,所以有必要檢驗(yàn)求出來(lái)的這一對(duì)數(shù)值是不是原方程組的解;四是為了杜絕變形和計(jì)算時(shí)發(fā)生的錯(cuò)誤.檢驗(yàn)可以口算或在草稿紙上演算,教科書(shū)中沒(méi)有寫(xiě)出.
2.教學(xué)時(shí),應(yīng)結(jié)合具體的例子指出這里解二元一次方程組的關(guān)鍵在于消元,即把“二元”轉(zhuǎn)化為“一元”.我們是通過(guò)等量代換的方法,消去一個(gè)未知數(shù),從而求得原方程組的解.早一些指出消元思想和把“二元”轉(zhuǎn)化為“一元”的方法,這樣,學(xué)生就能有較強(qiáng)的目的性.
3.教師講解例題時(shí)要注意由簡(jiǎn)到繁,由易到難,逐步加深.隨著例題由簡(jiǎn)到繁,由易到難,要特別強(qiáng)調(diào)解方程組時(shí)應(yīng)努力使變形后的方程比較簡(jiǎn)單和代入后化簡(jiǎn)比較容易.這樣不僅可以求解迅速,而且可以減少錯(cuò)誤.
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1.掌握用代入法解二元一次方程組的步驟.
2.熟練運(yùn)用代入法解簡(jiǎn)單的二元一次方程組.
(二)能力訓(xùn)練點(diǎn)
1.培養(yǎng)學(xué)生的分析能力,能迅速在所給的二元一次方程組中,選擇一個(gè)系數(shù)較簡(jiǎn)單的方程進(jìn)行變形.
2.訓(xùn)練學(xué)生的運(yùn)算技巧,養(yǎng)成檢驗(yàn)的習(xí)慣.
(三)德育滲透點(diǎn)
消元,化未知為已知的數(shù)學(xué)思想.
(四)美育滲透點(diǎn)
通過(guò)本節(jié)課的學(xué)習(xí),滲透化歸的數(shù)學(xué)美,以及方程組的解所體現(xiàn)出來(lái)的奇異的數(shù)學(xué)美.
二、學(xué)法引導(dǎo)
1.教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、練習(xí)法,嘗試指導(dǎo)法.
2.學(xué)生學(xué)法:在前面已經(jīng)學(xué)過(guò)一元一次方程的解法,求二元一次方程組的解關(guān)鍵是化二元方程為一元方程,故在求解過(guò)程當(dāng)中始終應(yīng)抓住消元的思想方法.
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
(-)重點(diǎn)
使學(xué)生會(huì)用代入法解二元一次方程組.
(二)難點(diǎn)
靈活運(yùn)用代入法的技巧.
(三)疑點(diǎn)
如何“消元”,把“二元”轉(zhuǎn)化為“一元”.
(四)解決辦法
一方面復(fù)習(xí)用一個(gè)未知量表示另一個(gè)未知量的方法,另一方面學(xué)會(huì)選擇用一個(gè)系數(shù)較簡(jiǎn)單的方程進(jìn)行變形:
四、課時(shí)安排
一課時(shí).
五、教具學(xué)具準(zhǔn)備
電腦或投影儀、自制膠片.
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
1.教師設(shè)問(wèn)怎樣用一個(gè)未知量表示另一個(gè)未知量,并比較哪種表示形式更簡(jiǎn)單,如 等.
2.通過(guò)課本中香蕉、蘋(píng)果的應(yīng)用問(wèn)題,引導(dǎo)學(xué)生列出一元一次方程或二元一次方程組,并通過(guò)比較、嘗試,探索出化二元為一元的解方程組的方法.
3.再通過(guò)比較、嘗試,探索出選一個(gè)系數(shù)較簡(jiǎn)單的方程變形,通過(guò)代入法求方程組解的辦法更簡(jiǎn)便,并尋找出求解的規(guī)律.
七、教學(xué)步驟
(-)明確目標(biāo)
本節(jié)課我們將學(xué)習(xí)用代入法求二元一次方程組的解.
(二)整體感知
從復(fù)習(xí)用一個(gè)未知量表達(dá)另一個(gè)未知量的方法,從而導(dǎo)入運(yùn)用代入法化二元為一元方程的求解過(guò)程,即利用代入消元法求二元一次方程組的解的辦法.
(三)教學(xué)步驟
1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
(1)已知方程 ,先用含 的代數(shù)式表示 ,再用含 的代數(shù)式表示 .并比較哪一種形式比較簡(jiǎn)單.
(2)選擇題:
二元一次方程組 的解是
A. B. C. D.
第(1)題為用代入法解二元一次方程組打下基礎(chǔ);第(2)題既復(fù)習(xí)了上節(jié)課的重點(diǎn),又成為導(dǎo)入新課的材料.
通過(guò)上節(jié)課的學(xué)習(xí),我們會(huì)檢驗(yàn)一對(duì)數(shù)值是否為某個(gè)二元一次方程組的解.那么,已知一個(gè)二元一次方程組,應(yīng)該怎樣求出它的解呢?這節(jié)課我們就來(lái)學(xué)習(xí).
這樣導(dǎo)入,可以激發(fā)學(xué)生的求知欲.
2.探索新知,講授新課
香蕉的售價(jià)為5元/千克,蘋(píng)果的售價(jià)為3元/千克,小華共買(mǎi)了香蕉和蘋(píng)果9千克,付款33元,香蕉和蘋(píng)果各買(mǎi)了多少千克?
學(xué)生活動(dòng):分別列出一元一次方程和二元一次方程組,兩個(gè)學(xué)生板演.
設(shè)買(mǎi)了香蕉 千克,那么蘋(píng)果買(mǎi)了 千克,根據(jù)題意,得
設(shè)買(mǎi)了香蕉 千克,買(mǎi)了蘋(píng)果 千克,得
上面的一元一次方程我們會(huì)解,能否把二元一次方程組轉(zhuǎn)化為一元一次方程呢,由方程①可以得到 ③,把方程②中的 轉(zhuǎn)換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉(zhuǎn)化成了一元一次方程,由這個(gè)方程就可以求出 了.
解:由①得: ③
把③代入②,得:
∴
把 代入③,得:
∴
解二元一次方程組與解一元一次方程相比較,向?qū)W生展示了知識(shí)的發(fā)生過(guò)程,這對(duì)于學(xué)生知識(shí)的形成十分重要.
上面解二元一次方程組的方法,就是代入消元法.你能簡(jiǎn)單說(shuō)說(shuō)用代入法解二元一次方程組的基本思路嗎?
學(xué)生活動(dòng):小組討論,選代表發(fā)言,教師進(jìn)行指導(dǎo).糾正后歸納:設(shè)法消去一個(gè)未知數(shù),把二元一次方程組轉(zhuǎn)化為一元一次方程.
例1 解方程組
(1)觀察上面的方程組,應(yīng)該如何消元?(把①代入②)
(2)把①代入②后可消掉 ,得到關(guān)于 的一元一次方程,求出 .
(3)求出 后代入哪個(gè)方程中求 比較簡(jiǎn)單?(①)
學(xué)生活動(dòng):依次回答問(wèn)題后,教師板書(shū)
解:把①代入②,得
∴
把 代入①,得
∴
如何檢驗(yàn)得到的結(jié)果是否正確?
學(xué)生活動(dòng):口答檢驗(yàn).
教師:要把所得結(jié)果分別代入原方程組的每一個(gè)方程中.
給出例1后提出的三個(gè)問(wèn)題,恰好是學(xué)生的思維過(guò)程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過(guò)檢驗(yàn),可使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)認(rèn)真的學(xué)習(xí)習(xí)慣.
例2 解方程組
要把某個(gè)方程化成如例1中方程①的形式后,代入另一個(gè)方程中才能消元.方程②中 的系數(shù)是1,比較簡(jiǎn)單.因此,可以先將方程②變形,用含 的代數(shù)式表示 ,再代入方程①求解.
學(xué)生活動(dòng):嘗試完成例2.
教師巡視指導(dǎo),發(fā)現(xiàn)并糾正學(xué)生的問(wèn)題,把書(shū)寫(xiě)過(guò)程規(guī)范化.
解:由②,得 ③
把③代入①,得
∴
∴
把 代入③,得
∴
∴
檢驗(yàn)后,師生共同討論:
(1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)
(2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運(yùn)算簡(jiǎn)便)
學(xué)生活動(dòng):根據(jù)例1、例2的解題過(guò)程,嘗試總結(jié)用代入法解二元一次方程組的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁(yè),用幾個(gè)字概括每個(gè)步驟.
教師板書(shū):
(1)變形( )
(2)代入消元( )
(3)解一元一次方程得( )
(4)把 代入 求解
練習(xí):P13 1.(1)(2);P14 2.(1)(2).
3.變式訓(xùn)練,培養(yǎng)能力
①由 可以得到用 表示 .
②在 中,當(dāng) 時(shí), ;當(dāng) 時(shí), ,則 ; .
③選擇:若 是方程組 的解,則( )
A. B. C. D.
(四)總結(jié)、擴(kuò)展
1.解二元一次方程組的思想:
2.用代入法解二元一次方程組的步驟.
3.用代入法解二元一次方程組的技巧:①變形的技巧②代入的技巧.
通過(guò)這節(jié)課的學(xué)習(xí),我們要熟練運(yùn)用代入法解二元一次方程組,并能檢驗(yàn)結(jié)果是否正確.
八、布置作業(yè)
(一)必做題:P15 1.(2)(4),2.(1)(2)(3)(4).
(二)選做題:P15 B組1.
教學(xué)目標(biāo)
1.會(huì)列二元一次方程組解簡(jiǎn)單的應(yīng)用題并能檢驗(yàn)結(jié)果的合理性。
2.提高分析問(wèn)題、解決問(wèn)題的能力。
3.體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值。
教學(xué)重點(diǎn)
根據(jù)實(shí)際問(wèn)題列二元一次方程組。
教學(xué)難點(diǎn)
1.找實(shí)際問(wèn)題中的相等關(guān)系。
2.徹底理解題意。
教學(xué)過(guò)程
一、引入。
本節(jié)課我們繼續(xù)學(xué)習(xí)用二元一次方程組解決簡(jiǎn)單實(shí)際問(wèn)題。
二、新課。
例1. 小琴去縣城,要經(jīng)過(guò)外祖母家,頭一天下午從她家走到個(gè)祖母家里,第二天上午,從外外祖母家出發(fā)勻速前進(jìn),走了2小時(shí)、5小時(shí)后,離她自己家分別為13千米、25千米。你能算出她的速度嗎?還能算出她家與外祖母家相距多遠(yuǎn)嗎?
探究: 1. 你能畫(huà)線段表示本題的數(shù)量關(guān)系嗎?
2.填空:(用含S、V的代數(shù)式表示)
設(shè)小琴速度是V千米/時(shí),她家與外祖母家相距S千米,第二天她走2小時(shí)趟的路程是______千米。此時(shí)她離家距離是______千米;她走5小時(shí)走的路程是______千米,此時(shí)她離家的距離是________千米20xx年-20xx學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)教案(人教版)教案。
3.列方程組。
4.解方程組。
5.檢驗(yàn)寫(xiě)出答案。
討論:本題是否還有其它解法?
三、練習(xí)。
1.建立方程模型。
(1)兩在相距280千米,一般順流航行需14小時(shí),逆流航行需20小時(shí),求船在靜水中速度,水流的速度
(2)420個(gè)零件由甲、乙兩人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,還需3天完成。問(wèn):甲、乙每天各做多少個(gè)零件?
2.P38練習(xí)第2題。
3.小組合作編應(yīng)用題:兩個(gè)寫(xiě)一方程組,另兩人根據(jù)方程組編應(yīng)用題。
四、小結(jié)。
本節(jié)課你有何收獲?
教學(xué)目標(biāo):
1、會(huì)用代入法解二元一次方程組
2、會(huì)闡述用代入法解二元一次方程組的基本思路——通過(guò)“代入”達(dá)到“消元”的目的,從而把解二元一次方程組轉(zhuǎn)化為解一元一次方程。
此外,在用代入法解二元一次方程組的知識(shí)發(fā)生過(guò)程中,讓學(xué)生從中體會(huì)“化未知為已知”的重要的數(shù)學(xué)思想方法。
引導(dǎo)性材料:
本節(jié)課,我們以上節(jié)課討論的求甲、乙騎自行車速度的問(wèn)題為例,探求二元一次方程組的解法。前面我們根據(jù)問(wèn)題“甲、乙騎自行車從相距60千米的兩地相向而行,經(jīng)過(guò)兩小時(shí)相遇。已知乙的速度是甲的速度的2倍,求甲、乙兩人的速度?!痹O(shè)甲的速度為X千米/小時(shí),由題意可得一元一次方程2(X+2X)=60;設(shè)甲的速度為X千米/小時(shí),乙的速度為Y千米/小時(shí),由題意可得二元一次方程組 2(X+Y)=60
Y=2X 觀察
2(X+2X)=60與 2(X+Y)=60 ①
Y=2X ② 有沒(méi)有內(nèi)在聯(lián)系?有什么內(nèi)在聯(lián)系?
(通過(guò)較短時(shí)間的觀察,學(xué)生通常都能說(shuō)出上面的二元一次方程組與一元一次方程的內(nèi)在聯(lián)系——把方程①中的“Y”用“2X”去替換就可得到一元一次方程。)
知識(shí)產(chǎn)生和發(fā)展過(guò)程的教學(xué)設(shè)計(jì)
問(wèn)題1:從上面的二元一次方程組與一元一次方程的內(nèi)在聯(lián)系的研究中,我們可以得到什么啟發(fā)?把方程①中的“Y”用“2X”去替換,就是把方程②代入方程①,于是我們就把一個(gè)新問(wèn)題(解二元一次方程組)轉(zhuǎn)化為熟悉的問(wèn)題(解一元一次方程)。
解方程組 2(X+Y)=60 ①
Y=2X ②
解:把②代入①得:
2(X+2X)=60,
6X=60,
X=10
把X=10代入②,得
Y=20
因此: X=10
Y=20
問(wèn)題2:你認(rèn)為解方程組 2(X+Y)=60 ①
Y=2X ② 的關(guān)鍵是什么?那么解方程組
X=2Y+1
2X—3Y=4 的關(guān)鍵是什么?求出這個(gè)方程組的解。
上面兩個(gè)二元一次方程組求解的基本思路是:通過(guò)“代入”,達(dá)到消去一個(gè)未知數(shù)(即消元)的目的,從而把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解二元一次方程組的方法叫“代入消元法”,簡(jiǎn)稱“代入法”。
問(wèn)題3:對(duì)于方程組 2X+5Y=-21 ①
X+3Y=8 ② 能否像上述兩個(gè)二元一次方程組一樣,把方程組中的一個(gè)方程直接代入另一個(gè)方程從而消去一個(gè)未知數(shù)呢?
(說(shuō)明:從學(xué)生熟悉的列一元一次方程求解兩個(gè)未知數(shù)的問(wèn)題入手來(lái)研究二元一次方程組的解法,有利于學(xué)生建立新舊知識(shí)的聯(lián)系和培養(yǎng)良好的學(xué)習(xí)習(xí)慣,使學(xué)生逐步學(xué)會(huì)把一個(gè)還不會(huì)解決的問(wèn)題轉(zhuǎn)化為一個(gè)已經(jīng)會(huì)解決的問(wèn)題的思想方法,對(duì)后續(xù)的解三無(wú)一次方程組、一元二次方程、分式方程等,學(xué)生就有了求解的策略。)
例題解析
例:用代入法將下列解二元一次方程組轉(zhuǎn)化為解一元一次方程:
(1)X=1-Y ①
3X+2Y=5 ②
將①代入②(消去X)得:
3(1-Y)+2Y=5
(2)5X+2Y-25.2=0 ①
3X-5=Y ②
將②代入①(消去Y)得:
5X+2(3X-5)-25.2=0
(3)2X+Y=5 ①
3X+4Y=2 ②
由①得Y=5-2X,將Y=5-2X代入②消去Y得:
3X+4(5-2X)=2
(4)2S-T=3 ①
3S+2T=8 ②
由①得T=2S-3,將T=2S-3代入②消去T得:
3S+2(2S-3)=8
課內(nèi)練習(xí):
解下列方程組。
(1)2X+5Y=-21 (2)3X-Y=2
X+3Y=8 3X=11-2Y
小結(jié):
1、用代入法解二元一次方程組的關(guān)鍵是“消元”,把新問(wèn)題(解二元一次方程組)轉(zhuǎn)化為舊知識(shí)(解一元一次方程)來(lái)解決。
2、用代入法解二元一次方程組,常常選用系數(shù)較簡(jiǎn)單的方程變形,這用利于正確、簡(jiǎn)捷的消元。
3、用代入法解二元一次方程組,實(shí)質(zhì)是數(shù)學(xué)中常用的重要的“換元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替換,使方程②中只含有一個(gè)未知數(shù)Y。
課后作業(yè):
教科書(shū)第14頁(yè)練習(xí)題2(1)、(2)題,第15頁(yè)習(xí)題5.2A組2(1)、(2)、(4)題。
【教學(xué)目標(biāo)】
【知識(shí)目標(biāo)】
了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會(huì)判斷一組數(shù)是不是某個(gè)二元一次方程組的解。
【能力目標(biāo)】
通過(guò)討論和練習(xí),進(jìn)一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。
【情感目標(biāo)】
通過(guò)對(duì)實(shí)際問(wèn)題的分析,使學(xué)生進(jìn)一步體會(huì)方程是刻畫(huà)現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。
【重點(diǎn)】
二元一次方程組的含義
【難點(diǎn)】
判斷一組數(shù)是不是某個(gè)二元一次方程組的解,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。
【教學(xué)過(guò)程】
一、引入、實(shí)物投影
1、師:在一望無(wú)際呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說(shuō):“累死我了”,小馬說(shuō):“你還累,這么大的個(gè),才比我多馱2個(gè)”老牛氣不過(guò)地說(shuō):“哼,我從你背上拿來(lái)一個(gè),我的包裹就是你的2倍!”,小馬天真而不信地說(shuō):“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識(shí)幫助小馬解決問(wèn)題呢?
2、請(qǐng)每個(gè)學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)
這個(gè)問(wèn)題由于涉及到老牛和小馬的馱包裹的兩個(gè)未知數(shù),我們?cè)O(shè)老牛馱x個(gè)包裹,小馬馱y個(gè)包裹,老牛的包裹數(shù)比小馬多2個(gè),由此得方程x-y=2,若老牛從小馬背上拿來(lái)1個(gè)包裹,這時(shí)老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)
師:同學(xué)們能用方程的方法來(lái)發(fā)現(xiàn)、解決問(wèn)題這很好,上面所列方程有幾個(gè)未知數(shù)?含未知數(shù)的項(xiàng)的次數(shù)是多少?(含有兩個(gè)未知數(shù),并且所含未知數(shù)項(xiàng)的次數(shù)是1)
師:含有兩個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的次數(shù)都是1的方程叫做二元一次方程
注意:這個(gè)定義有兩個(gè)地方要注意①、含有兩個(gè)未知數(shù),②、含未知數(shù)的次數(shù)是一次
練習(xí)(投影)
下列方程有哪些是二元一次方程
+2y=1xy+x=13x-=5x2-2=3x
xy=12x(y+1)=c2x-y=1x+y=0
二、議一議、
師:上面的方程中x-y=2,x+1=2(y-1)的x含義相同嗎?y呢?
師:由于x、y的含義分別相同,因而必同時(shí)滿足x-y=2和x+1=2(y-1),我們把這兩個(gè)方程用大括號(hào)聯(lián)立起來(lái),寫(xiě)成
x-y=2
x+1=2(y-1)
像這樣含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組。
如:2x+3y=35x+3y=8
x-3y=0x+y=8
三、做一做、
1、x=6,y=2適合方程x+y=8嗎?x=5,y=3呢?x=4,y=4呢?你還能找到其他x,y值適合x(chóng)+y=8方程嗎?
2、X=5,y=3適合方程5x+3y=34嗎?x=2,y=8呢?
你能找到一組值x,y同時(shí)適合方程x+y=8和5x+3y=34嗎?
x=6,y=2是方程x+y=8的一個(gè)解,記作x=6同樣,x=5
y=2y=3
也是方程x+y=8的一個(gè)解,同時(shí)x=5又是方程5x+3y=34的一個(gè)解,
y=3
四、隨堂練習(xí)(P103)
五、小結(jié):
1、含有兩未知數(shù),并且含有未知數(shù)的項(xiàng)的次數(shù)是一次的整式方程叫做二元一次方程。
2、二元一次方程的解是一個(gè)互相關(guān)聯(lián)的兩個(gè)數(shù)值,它有無(wú)數(shù)個(gè)解。
3、含有兩個(gè)未知數(shù)的兩個(gè)二元一次方程組成的一組方程,叫做二元一次方程組,它的解是兩個(gè)方程的公共解,是一組確定的值。
一、復(fù)習(xí)引入
1.已知方程x2-ax-3a=0的一個(gè)根是6,則求a及另一個(gè)根的值.
2.由上題可知一元二次方程的系數(shù)與根有著密切的關(guān)系.其實(shí)我們已學(xué)過(guò)的求根公式也反映了根與系數(shù)的關(guān)系,這種關(guān)系比較復(fù)雜,是否有更簡(jiǎn)潔的關(guān)系?
3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過(guò)什么計(jì)算才能得到更簡(jiǎn)潔的關(guān)系?
二、探索新知
解下列方程,并填寫(xiě)表格:
方程 x1 x2 x1+x2 x1?x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
觀察上面的表格,你能得到什么結(jié)論?
(1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q之間有什么關(guān)系?
(2)關(guān)于x的方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數(shù)a,b,c之間又有何關(guān)系呢?你能證明你的猜想嗎?
解下列方程,并填寫(xiě)表格:
方程 x1 x2 x1+x2 x1?x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小結(jié):根與系數(shù)關(guān)系:
(1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q的關(guān)系是:x1+x2=-p,x1?x2=q(注意:根與系數(shù)關(guān)系的前提條件是根的判別式必須大于或等于零.)
(2)形如ax2+bx+c=0(a≠0)的方程,可以先將二次項(xiàng)系數(shù)化為1,再利用上面的結(jié)論.
即:對(duì)于方程 ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1?x2=ca
(可以利用求根公式給出證明)
例1 不解方程,寫(xiě)出下列方程的兩根和與兩根積:
(1)x2-3x-1=0 (2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2 不解方程,檢驗(yàn)下列方程的解是否正確?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3 已知一元二次方程的兩個(gè)根是-1和2,請(qǐng)你寫(xiě)出一個(gè)符合條件的方程.(你有幾種方法?)
例4 已知方程2x2+kx-9=0的一個(gè)根是-3,求另一根及k的值.
變式一:已知方程x2-2kx-9=0的兩根互為相反數(shù),求k;
變式二:已知方程2x2-5x+k=0的兩根互為倒數(shù),求k.
三、課堂小結(jié)
1.根與系數(shù)的關(guān)系.
2.根與系數(shù)關(guān)系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零.
四、作業(yè)布置
1.不解方程,寫(xiě)出下列方程的兩根和與兩根積.
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2.已知方程x2-3x+m=0的一個(gè)根為1,求另一根及m的值.
3.已知方程x2+bx+6=0的一個(gè)根為-2,求另一根及b的值
教學(xué)目標(biāo):
1、使學(xué)生會(huì)借助二元一次方程組解決簡(jiǎn)單的實(shí)際問(wèn)題,讓學(xué)生再次體會(huì)二元一次方程組與現(xiàn)實(shí)生活的聯(lián)系和作用2、通過(guò)應(yīng)用題教學(xué)使學(xué)生進(jìn)一步使用代數(shù)中的方程去反映現(xiàn)實(shí)世界中等量關(guān)系,體會(huì)代數(shù)方法的優(yōu)越性。
重點(diǎn):能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關(guān)系;
難點(diǎn):正確發(fā)找出問(wèn)題中的兩個(gè)等量關(guān)系
教學(xué)過(guò)程:
一、復(fù)習(xí)
列方程解應(yīng)用題的步驟是什么?
審題、設(shè)未知數(shù)、列方程、解方程、檢驗(yàn)并答
新課:
看一看課本99頁(yè)探究1
問(wèn)題:
1題中有哪些已知量?哪些未知量?
2題中等量關(guān)系有哪些?
3如何解這個(gè)應(yīng)用題?
本題的等量關(guān)系是(1)30只母牛和15只小牛一天需用飼料為675kg
(2)(30+12只母牛和(15+5)只小牛一天需用飼料為940
練一練:
1、某所中學(xué)現(xiàn)在有學(xué)生4200人,計(jì)劃一年后初中在樣生增加8%,高中在校生增加11%,這樣全校學(xué)生將增加10%,這所學(xué)?,F(xiàn)在的初中在校生和高中在校生人數(shù)各是多少人?
2、有大小兩輛貨車,兩輛大車與3輛小車一次可以支貨15。50噸,5輛大車與6輛小車一次可以支貨35噸,求3輛大車與5輛小車一次可以運(yùn)貨多少噸?
3、某工廠第一車間比第二車間人數(shù)的少30人,如果從第二車間調(diào)出10人到第一車間,則第一車間的人數(shù)是第二車間的,問(wèn)這兩車間原有多少人?
4、某運(yùn)輸隊(duì)送一批貨物,計(jì)劃20天完成,實(shí)際每天多運(yùn)送5噸,結(jié)果不但提前2天完成任務(wù)并多運(yùn)了10噸,求這批貨物有多少噸?原計(jì)劃每天運(yùn)輸多少噸?
教學(xué)目標(biāo)
1.會(huì)列出二元一次方程組解簡(jiǎn)單應(yīng)用題,并能檢驗(yàn)結(jié)果的合理性。
2.知道二元一次方程組是反映現(xiàn)實(shí)世界量之間相等關(guān)系的一種有效的數(shù)學(xué)模型20xx年-20xx學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)教案(人教版)20xx年-20xx學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)教案(人教版)。
3.引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),滲透將來(lái)未知轉(zhuǎn)達(dá)化為已知的辯證思想。
教學(xué)重點(diǎn)
1.列二元一次方程組解簡(jiǎn)單問(wèn)題。
2.徹底理解題意
教學(xué)難點(diǎn)
找等量關(guān)系列二元一次方程組。
教學(xué)過(guò)程
一、情境引入。
小剛與小玲一起在水果店買(mǎi)水果,小剛買(mǎi)了3千克蘋(píng)果,2千克梨,共花了18.8元。小玲買(mǎi)了2千克蘋(píng)果,3千克梨,共花了18.2元?;丶衣飞?,他們遇上了好朋友小軍,小軍問(wèn)蘋(píng)果、梨各多少錢(qián)1千克?他們不講,只講各自買(mǎi)的幾千克水果和總共的錢(qián),要小軍猜。聰明的同學(xué)們,小軍能猜出來(lái)嗎?
二、建立模型。
1.怎樣設(shè)未知數(shù)?
2.找本題等量關(guān)系?從哪句話中找到的?
3.列方程組。
4.解方程組。
5.檢驗(yàn)寫(xiě)答案。
思考:怎樣用一元一次方程求解?
比較用一元一次方程求解,用二元一次方程組求解誰(shuí)更容易?
三、練習(xí)。
1.根據(jù)問(wèn)題建立二元一次方程組。
(1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。
(2)80班共有64名學(xué)生,其中男生比女生多8人,求這個(gè)班男生人數(shù),女生人數(shù)。
(3)已知關(guān)于求x、y的方程,
是二元一次方程。求a、b的值。
2.P38練習(xí)第1題。
四、小結(jié)。
小組討論:列二元一次方程組解應(yīng)用題有哪些基本步驟?
五、作業(yè)。
P42。習(xí)題2.3A組第1題。
后記:
2.3二元一次方程組的應(yīng)用(2)
各位評(píng)委、老師大家好:
我說(shuō)課的題目是《二元一次方程組的解法----代入消元法》,內(nèi)容選自人教版九年義務(wù)教育七年級(jí)數(shù)學(xué)下冊(cè)第八章第二節(jié)第一課時(shí)。
一、說(shuō)教材
(一)地位和作用
本節(jié)主要內(nèi)容是在上節(jié)已認(rèn)識(shí)二元一次方程(組)和二元一次方程(組)的解等概念的基礎(chǔ)上,來(lái)學(xué)習(xí)解方程組的第一種方法——代入消元法。并初步體會(huì)解二元一次方程組的基本思想“消元”。二元一次方程組的求解,不但用到了前面學(xué)過(guò)的一元一次方程的解法,是對(duì)過(guò)去所學(xué)知識(shí)的一個(gè)回顧和提高,同時(shí),也為后面的利用方程組來(lái)解決實(shí)際問(wèn)題打下了基礎(chǔ)。初中階段要掌握的二元一次方程組的解法有代入消元法和加減消元兩種,教材都是按先求解后應(yīng)用的順序安排,這樣安排既可以在前一小節(jié)中有針對(duì)性的學(xué)習(xí)解法,又可在后一小節(jié)的應(yīng)用中鞏固前面的知識(shí),但教材相對(duì)應(yīng)的練習(xí)安排很少,不過(guò)這樣也給了我們一較大的發(fā)揮空間。
(二)課程目標(biāo)
1、知識(shí)目標(biāo)
(1)、了解解二元一次方程組的“消元”思想,體會(huì)學(xué)習(xí)數(shù)學(xué)中的“化未知為已知”,“化復(fù)雜為簡(jiǎn)單”的化歸思想。
(2)、了解代入法的概念,掌握代入法的基本步驟。
(3)、會(huì)用代入法求二元一次方程組的解。
2、能力目標(biāo)
培養(yǎng)學(xué)生動(dòng)手操作、探索、觀察、分析、劃歸獲得數(shù)學(xué)思想的能力;培養(yǎng)學(xué)生轉(zhuǎn)化獨(dú)立獲取知識(shí)的方法并解決問(wèn)題的能力。
3、情感目標(biāo)
(1)、在學(xué)生了解二元一次方程組的“消元”思想,從初步理解化“未知”為“已知和化復(fù)雜問(wèn)題為簡(jiǎn)單問(wèn)題的劃歸思想中,享受學(xué)習(xí)數(shù)學(xué)的興趣、提高學(xué)習(xí)數(shù)學(xué)的信心。
(三)教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):用代入消元法解二元一次方程組。
難點(diǎn):探索如何用代入消元法將“二元”轉(zhuǎn)化為“一元”的過(guò)程。
二、說(shuō)教法
針對(duì)本節(jié)特點(diǎn),在教學(xué)過(guò)程中采用自主、探究、合作交流的教學(xué)方法,由教師提出明確問(wèn)題,學(xué)生積極參與討論探究、合作交流,進(jìn)行總結(jié),使學(xué)生從中獲取知識(shí)。鑒于本節(jié)所學(xué)知識(shí)的特點(diǎn),抽象教學(xué)、學(xué)生生搬硬套的學(xué)習(xí)方式將難取得理想效果,因此教師在引入課題時(shí)要合理創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生去經(jīng)歷由具體問(wèn)題抽象出方程組的過(guò)程。并讓學(xué)生通過(guò)獨(dú)立觀察、合作交流來(lái)探討怎樣才能變“二元”為“一元”。然后利用單個(gè)二元一次方程的變形及時(shí)強(qiáng)化“代入”的本質(zhì)。
三、說(shuō)學(xué)法
本節(jié)學(xué)生在獨(dú)立思考、自主探究中學(xué)習(xí)并對(duì)老師的問(wèn)題展開(kāi)討論與交流。如何用代入消元法將“二元”轉(zhuǎn)化為“一元”學(xué)生較難掌握,在提出消元思想后,應(yīng)對(duì)具體的消元解法的過(guò)程進(jìn)行歸納,讓學(xué)生得到對(duì)代入法的基本步驟的概括,通過(guò)“把一個(gè)方程(必要時(shí)先做適當(dāng)變形)代入另一個(gè)方程”實(shí)現(xiàn)消元。應(yīng)注意引導(dǎo)學(xué)生認(rèn)識(shí)到為什么要實(shí)施這樣的步驟。把具體做法與消元結(jié)合,使學(xué)生明解其目的性。明確這樣做的依據(jù)是等量代換。七年級(jí)的學(xué)生已經(jīng)初步具備合作交流的能力??梢酝ㄟ^(guò)探究和合作來(lái)實(shí)現(xiàn)課程目標(biāo);此外,教學(xué)中,范例的講解和隨堂練習(xí)始終是學(xué)以對(duì)用的有效方法。隨堂練習(xí)時(shí)應(yīng)引導(dǎo)學(xué)生通過(guò)自我反省、小組評(píng)價(jià)來(lái)克服解題時(shí)的錯(cuò)誤,必要時(shí)給與規(guī)范矯正。
四、說(shuō)教學(xué)程序
本節(jié)課我將“自主、探究、合作、交流”運(yùn)用到教學(xué)中,教學(xué)過(guò)程可以劃分為以下幾個(gè)環(huán)節(jié):
1、引入新知:利用多媒體教學(xué)手段,創(chuàng)設(shè)情境,通過(guò)籃球比賽問(wèn)題引入教學(xué),情境活潑、自然。
2、探究新知:在籃球比賽問(wèn)題中,首先可以用一元一次方程來(lái)解決實(shí)際問(wèn)題,接著提出問(wèn)題:能否設(shè)出兩個(gè)未知數(shù),列出兩個(gè)方程組成方程組呢?(學(xué)生獨(dú)立思考后分組探究討論)。在學(xué)生得出正確的方程組之后提出問(wèn)題:怎樣解這個(gè)方程組呢?(學(xué)生分組討論,教師加以適當(dāng)?shù)囊龑?dǎo)),各組派代表得出自己的結(jié)論,教師適時(shí)引導(dǎo)“消元”思想,對(duì)消元解法的過(guò)程予以歸納。
3、運(yùn)用新知:在得出“代入消元”解二元一次方程組后,應(yīng)用“代入消元法”解決實(shí)際問(wèn)題,在學(xué)生解題過(guò)程中著重強(qiáng)調(diào)、矯正、理清思路和步驟。然后師生一起“解后思”:在解題時(shí)應(yīng)注意什么?在隨堂練習(xí)時(shí)教師關(guān)鍵是反饋矯正、積極評(píng)價(jià)。
4、教學(xué)小結(jié),知識(shí)回顧:讓學(xué)生暢所欲言談本節(jié)課的得失,感到困惑和疑難的地方、解題的關(guān)鍵和步驟等。教師在學(xué)生發(fā)言的基礎(chǔ)上再進(jìn)行提煉:解二元一次方程組的主要思路是“消元”;解二元一次方程組的一般步驟是:“一變、二代、三求、四代、五定”。
5、課外作業(yè)。為進(jìn)一步鞏固知識(shí),布置適當(dāng)?shù)?、具有代表性的作業(yè)。
五、說(shuō)應(yīng)用
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“數(shù)學(xué)來(lái)源于生活”“數(shù)學(xué)服務(wù)于生活”“數(shù)學(xué)問(wèn)題要生活化”,“讓數(shù)學(xué)走進(jìn)生活”已是一種全新的教育理念,它有利于實(shí)現(xiàn)“不同人在數(shù)學(xué)上得到不同的發(fā)展。”為此,在數(shù)學(xué)課堂教學(xué)中,教師要善于創(chuàng)設(shè)教學(xué)情境,為學(xué)生創(chuàng)造一個(gè)輕松、愉悅的學(xué)習(xí)氛圍,集中學(xué)生的注意力,把學(xué)生思緒帶進(jìn)特定的學(xué)習(xí)情境中去,激發(fā)他們濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲望。同時(shí),教師設(shè)計(jì)教學(xué)活動(dòng)時(shí),要充分利用現(xiàn)代遠(yuǎn)程教育資源結(jié)合本班的實(shí)際和知識(shí)水平,精心為學(xué)生創(chuàng)設(shè)貼進(jìn)生活的學(xué)習(xí)情境,讓學(xué)生有身臨其境的感覺(jué),從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲。
總之,在數(shù)學(xué)教學(xué)中合理運(yùn)用多媒體教學(xué)平臺(tái),能極大地方便教學(xué),減輕教師的負(fù)擔(dān),更好地優(yōu)化課堂結(jié)構(gòu),促進(jìn)教學(xué)質(zhì)量的提高。學(xué)生的學(xué)習(xí)方式不再單一,學(xué)習(xí)興趣明顯提高,能自主地學(xué)習(xí),真正成為學(xué)習(xí)的主體。
一、說(shuō)教材
首先談?wù)勎覍?duì)教材的理解,《二元一次方程組》是人教版初中數(shù)學(xué)七年級(jí)下冊(cè)第八章第一節(jié)的內(nèi)容,本節(jié)課的內(nèi)容是二元一次方程組的概念以及二元一次方程組的解。在此之前學(xué)習(xí)了一元一次方程和解方程的步驟,為本節(jié)課打下了良好的基礎(chǔ)。學(xué)了本節(jié)課為后面的解二元一次方程的方法做下鋪墊。因此本節(jié)課有著承上啟下的作用。
二、說(shuō)學(xué)情
接下來(lái)談?wù)剬W(xué)生的實(shí)際情況。新課標(biāo)指出學(xué)生是教學(xué)的主體,所以要成為符合新課標(biāo)要求的教師,深入了解所面對(duì)的學(xué)生可以說(shuō)是必修課。本階段的學(xué)生已經(jīng)具備了一定的分析能力,與類比學(xué)習(xí)能力。而且在生活中也為本節(jié)課積累了很多經(jīng)驗(yàn)。所以,學(xué)生對(duì)于二元一次方程組概念理解較為容易,找出方程組的解,相對(duì)來(lái)說(shuō)有難度,需要教師多引導(dǎo)。
三、說(shuō)教學(xué)目標(biāo)
根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):
(一)知識(shí)與技能
掌握二元一次方程與二元一次方程組的概念,并了解它們的解,能正確地找出二元一次方程組的解。
(二)過(guò)程與方法
通過(guò)類比學(xué)習(xí)、自主探究、合作交流的過(guò)程,提升類比學(xué)習(xí)的能力、培養(yǎng)探究的意識(shí)。
(三)情感態(tài)度價(jià)值觀
感受數(shù)學(xué)與生活的密切聯(lián)系,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。
四、說(shuō)教學(xué)重難點(diǎn)
我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說(shuō)一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)是:二元一次方程與二元一次方程組的概念以及方程與方程組的解。教學(xué)難點(diǎn)是:二元一次方程組解的探究。
五、說(shuō)教法和學(xué)法
現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過(guò)程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、小組合作等教學(xué)方法。
六、說(shuō)教學(xué)過(guò)程
下面我將重點(diǎn)談?wù)勎覍?duì)教學(xué)過(guò)程的設(shè)計(jì)。
(一)新課導(dǎo)入
首先是導(dǎo)入環(huán)節(jié),我采用情境導(dǎo)入:展示籃球聯(lián)賽圖片,給出評(píng)分標(biāo)準(zhǔn)。并提出問(wèn)題:這個(gè)隊(duì)伍勝負(fù)場(chǎng)數(shù)分別是多少?
根據(jù)學(xué)生回答追問(wèn):用列方程解決問(wèn)題,題中有幾個(gè)未知數(shù)呢?從而引出本節(jié)課的課題《二元一次方程組》
這樣設(shè)計(jì)的好處是:利用籃球聯(lián)賽的圖片導(dǎo)入,并講清楚評(píng)分規(guī)則,不僅可以吸引學(xué)生探索的興趣,還可以培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)。
(二)新知探索
接下來(lái)是教學(xué)中最重要的新知探索環(huán)節(jié),主要通過(guò)三個(gè)活動(dòng)展開(kāi)學(xué)習(xí)。
活動(dòng)一:學(xué)生嘗試列方程解決問(wèn)題,看看在列方程過(guò)程中遇到了什么困難?同桌之間互相交流。
學(xué)生分析題意,發(fā)現(xiàn)有未知數(shù),可以使用列方程的方法解決問(wèn)題。當(dāng)讓學(xué)生自己動(dòng)手練習(xí)時(shí),他們會(huì)發(fā)現(xiàn),勝負(fù)的場(chǎng)數(shù)都是未知的。
此時(shí)教師可以引導(dǎo)學(xué)生發(fā)現(xiàn)和思考:要求的是兩個(gè)未知數(shù),能不能根據(jù)題意直接設(shè)兩個(gè)未知數(shù),使列方程變得容易呢?學(xué)生在這樣的提示下會(huì)有一定的想法,但對(duì)于列出二元一次方程組來(lái)說(shuō)還是比較困難的。
教師板書(shū)表格示意圖,引導(dǎo)學(xué)生通過(guò)題意,發(fā)現(xiàn)題干中包含的必須同時(shí)滿足的條件,得到兩組關(guān)系式并設(shè)出未知數(shù)完成表格。
活動(dòng)二:學(xué)生觀察兩個(gè)方程特點(diǎn),與一元一次方程有什么不同?并試著下定義。
在這里學(xué)生通過(guò)類比學(xué)習(xí),能夠歸納出二元一次方程的概念:每個(gè)方程都含有兩個(gè)未知數(shù),并且含有未知數(shù)的項(xiàng)的次數(shù)都是1。了解了二元一次方程后,對(duì)于二元一次方程組的概念就可以很好的展開(kāi)了,對(duì)于本題列了兩個(gè)二元一次方程解決問(wèn)題,像這樣的方程組叫做二元一次方程組。
師生共同總結(jié)出二元一次方程與二元一次方程組的定義。
列出了二元一次方程組,要解決籃球聯(lián)賽的問(wèn)題,就要求出方程組的解,接下來(lái)進(jìn)行第三個(gè)活動(dòng)。
活動(dòng)三:完成表格,以二元一次方程組中的一個(gè)方程為例。小組合作,找出幾組整數(shù)解,并觀察哪一組解也符合另一個(gè)方程。
在這里解二元一次方程組,可以先將問(wèn)題簡(jiǎn)單化,先研究一個(gè)方程的解,找到幾組解后,再看哪一組解也符合第二個(gè)方程。也就是兩個(gè)方程的公共解。教師給出表格,小組在進(jìn)行合作時(shí),教師應(yīng)引導(dǎo)學(xué)生思考結(jié)合題意,兩個(gè)未知數(shù)應(yīng)取正整數(shù)。填完表格后,師生共同總結(jié)出二元一次方程解的定義。
教師繼續(xù)追問(wèn),哪一組的值也滿足第二個(gè)方程。師生共同總結(jié)出什么叫做二元一次方程組的解。
得到方程組的解,回歸情景得出實(shí)際問(wèn)題的答案。
設(shè)計(jì)意圖:通過(guò)三個(gè)活動(dòng)展開(kāi)本節(jié)課,不僅符合新課改的理念:學(xué)生是學(xué)習(xí)的主體,教師是教學(xué)活動(dòng)中的組織者、引導(dǎo)者、合作者,還能通過(guò)小組活動(dòng)、類比學(xué)習(xí)等活動(dòng)豐富課堂。
(三)課堂練習(xí)
接下來(lái)是鞏固提高環(huán)節(jié)。
練習(xí):對(duì)下面的問(wèn)題,列出二元一次方程組,并根據(jù)問(wèn)題的實(shí)際意義,找出問(wèn)題的解。
加工某種產(chǎn)品需經(jīng)兩道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件?,F(xiàn)有7位工人參加這兩道工序,應(yīng)怎樣安排人力,才能使每天第一、第二道工序所完成的件數(shù)相等?
設(shè)計(jì)這道題可以讓學(xué)生感受數(shù)學(xué)與生活的密切聯(lián)系,學(xué)以致用。教師可以及時(shí)掌握學(xué)生本節(jié)課的學(xué)習(xí)情況,給予補(bǔ)充糾正。
(四)小結(jié)作業(yè)
在課程的最后我會(huì)提問(wèn):今天有什么收獲?
引導(dǎo)學(xué)生回顧:二元一次方程組的定義與二元一次方程組的解。
本節(jié)課的課后作業(yè)我設(shè)計(jì)為:
思考除了用列表找二元一次方程組的解,還有什么方法能找出解,能不能將它變成我們熟悉的一元一次方程求解。
設(shè)計(jì)意圖:本節(jié)課學(xué)生通過(guò)列表觀察得到了方程組的解,作業(yè)設(shè)計(jì)為讓學(xué)生思考解二元一次方程組的方法,并提示能不能把它變成熟悉的一元一次方程求解,為下節(jié)課的學(xué)習(xí)做下鋪墊。
幼兒園教案《二元一次方程課件教案(合集12篇)》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專門(mén)為給您提供幼兒園教案而創(chuàng)建的網(wǎng)站。同時(shí),yjs21.com還為您精選準(zhǔn)備了二元一次方程課件教案專題,希望您能喜歡!
相關(guān)推薦
教案課件是老師上課做的提前準(zhǔn)備,因此我們老師需要認(rèn)認(rèn)真真去寫(xiě)。寫(xiě)好教案課件,讓重點(diǎn)內(nèi)容不至于漏掉,大家是不是在為寫(xiě)教案課件發(fā)愁呢?幼兒教師教育網(wǎng)小編為大家精心整理了一元一次方程課件教案,敬請(qǐng)您閱讀并收藏本文!...
教師的職業(yè)道德是做人之本,為師之本,編寫(xiě)教案是每一位教師應(yīng)該具備的技能。教案有助于老師順利地完成每節(jié)課的教學(xué)任務(wù)。以下內(nèi)容是小編特地為您準(zhǔn)備二元一次方程說(shuō)課稿,歡迎大家閱讀收藏,分享給身邊的人!...
編輯現(xiàn)在向你推薦解一元一次方程課件教案。在給學(xué)生上課之前老師早早準(zhǔn)備好教案課件,而現(xiàn)在又到了寫(xiě)課件的時(shí)候了。?學(xué)生反應(yīng)可以幫助教師制定更適合學(xué)生的教學(xué)計(jì)劃。歡迎大家閱讀,希望對(duì)大家有所幫助!...
學(xué)生們?cè)谡n堂上能夠獲得生動(dòng)有趣的教學(xué)體驗(yàn),這離不開(kāi)教師辛勤準(zhǔn)備的教案。如果教師沒(méi)有及時(shí)完成教案的準(zhǔn)備工作,那么課堂教學(xué)就會(huì)受到影響。學(xué)生對(duì)課堂的積極反應(yīng)可以反映教學(xué)的吸引力。那么從哪個(gè)角度去設(shè)計(jì)教案和課件呢?如果你不知道該看什么有用的文章,我建議你閱讀一下“解一元一次方程課件”。相信它會(huì)對(duì)你的學(xué)習(xí)和...
教師會(huì)將課本中的主要教學(xué)內(nèi)容整理到教案課件中,因此,教師需要精心計(jì)劃每份教案課件的重點(diǎn)和難點(diǎn)。詳實(shí)的教案能夠幫助教師記錄學(xué)生的學(xué)習(xí)進(jìn)度。如果想要寫(xiě)一份教案課件,需要具備哪些步驟呢?欄目小編推薦閱讀一元二次不等式課件教案,希望能對(duì)你有所幫助!...
最新更新