函數(shù)優(yōu)秀教案。
備課是老師授課前必須具備的一項工作,而教案的撰寫也不是輕松隨意的事。教案是教師進行教學(xué)的重要工具之一,它承載著教學(xué)中的重點難點和注重的方向。為滿足您的需求,本文特別提供了函數(shù)優(yōu)秀教案,期待幫助大家。
一、教材內(nèi)容及分析
《同角三角函數(shù)關(guān)系式》是人教版高中新教材必修4第一章第二節(jié)的第二課。本節(jié)內(nèi)容是同角三角函數(shù)關(guān)系式的運用,三種題型“知值求值”“弦化切”“函數(shù)思想的應(yīng)用”。
二、學(xué)生情況分析
本課時研究的是同角三角函數(shù)關(guān)系式的運用、逆用及變形,因此在教學(xué)過程中要發(fā)展學(xué)生的已有認知,發(fā)揮知識遷移。
三、教學(xué)目標
知識目標:
1掌握同角三角函數(shù)關(guān)系式的運用、逆用及變形;
2掌握同角三角函數(shù)關(guān)系式的三種題型。
能力目標:
滲透分類討論思想、方程思想。
情感、態(tài)度、價值觀目標:
發(fā)展學(xué)生研究問題、解決問題的能力。
四、教學(xué)重難點
重點:
同角三角函數(shù)關(guān)系式的運用、逆用及變形;
難點:
1.正確判斷三角函數(shù)的符號
2.靈活運用公式做運算
五、教學(xué)方法與策略
教學(xué)中注意用新課程理念處理教材,采用學(xué)生自主探索、動手實踐、合作交流、師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程。根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認知特點,本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學(xué)。
六、教學(xué)過程
引入(課件中:)
兩個公式
新課
例1 練習(xí)1(課件中)
意圖:加強學(xué)生對公式的理解,讓學(xué)生學(xué)會知值求值,能注意角的取值范圍,正確判斷函數(shù)值符號。
例2 練習(xí)1(課件中)
意圖:讓學(xué)生掌握齊次式分子分母同除余弦化正切。
例3 練習(xí)3(課件中)
意圖:讓學(xué)生理解掌握方程思想的應(yīng)用。
小結(jié)(課件中)
作業(yè)(課件中)
一、教學(xué)目標
(一)通過具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗數(shù)學(xué)概念的建立過程,培養(yǎng)其抽象概括能力、
(二)理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡單函數(shù)的奇偶性、
(三)在經(jīng)歷概念形成的過程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗數(shù)學(xué)既是抽象的又是具體的、
二、任務(wù)分析
這節(jié)內(nèi)容學(xué)生在初中雖沒學(xué)過,但已經(jīng)學(xué)習(xí)過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,便于學(xué)生理解、在引入概念時始終結(jié)合具體函數(shù)的圖像,增強直觀性,這樣更符合學(xué)生的認知規(guī)律,同時為闡述奇、偶函數(shù)的幾何特征埋下了伏筆、對于概念可從代數(shù)特征與幾何特征兩個角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點對稱的非空數(shù)集;對于有定義域奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R、在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念——非奇非偶函數(shù)、關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想的效果、
三、教學(xué)設(shè)計
(一)問題情景
1、觀察如下兩圖(圖略),思考并討論以下問題:
(1)這兩個函數(shù)圖像有什么共同特征?
(2)相應(yīng)的兩個函數(shù)值對應(yīng)表是如何體現(xiàn)這些特征的?
可以看到兩個函數(shù)的圖像都關(guān)于y軸對稱、從函數(shù)值對應(yīng)表可以看到,當(dāng)自變量x取一對相反數(shù)時,相應(yīng)的兩個函數(shù)值相同、
2、觀察函數(shù)f(x)=x和f(x)=的圖像,并完成下面的兩個函數(shù)值對應(yīng)表,然后說出這兩個函數(shù)有什么共同特征、
可以看到兩個函數(shù)的圖像都關(guān)于原點對稱、函數(shù)圖像的這個特征,反映在解析式上就是:當(dāng)自變量x取一對相反數(shù)時,相應(yīng)的函數(shù)值f(x)也是一對相反數(shù),即對任一x∈R都有f(-x)=-f(x)、此時,稱函數(shù)y=f(x)為奇函數(shù)、
(二)建立模型
由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義、
1、奇、偶函數(shù)的定義、
如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)、如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)、
2、提出問題,組織學(xué)生討論、
(1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎?
(f(x)不一定是偶函數(shù))
(2)奇、偶函數(shù)的圖像有什么特征?
(奇、偶函數(shù)的圖像分別關(guān)于原點、y軸對稱)
(3)奇、偶函數(shù)的定義域有什么特征?
(奇、偶函數(shù)的定義域關(guān)于原點對稱)
(三)解釋應(yīng)用
[例題]
1、判斷下列函數(shù)的奇偶性、
注:①規(guī)范解題格式;②對于(5)要注意定義域x∈(-1,1]、
2、已知:定義在R上的函數(shù)f(x)是奇函數(shù),當(dāng)x>0時,f(x)=x(1+x),求f(x)的表達式、
解:(1)任取x0,∴f(-x)=-x(1-x),而f(x)是奇函數(shù),∴f(-x)=-f(x),∴f(x)=x(1-x)、
(2)當(dāng)x=0時,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0、
3、已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)內(nèi)是增函數(shù),還是減函數(shù),并證明你的結(jié)論、
解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對稱,猜想f(x)在(0,+∞)內(nèi)是增函數(shù),證明如下:
∴f(x)在(0,+∞)上是增函數(shù)、
思考:奇函數(shù)或偶函數(shù)在關(guān)于原點對稱的兩個區(qū)間上的單調(diào)性有何關(guān)系?
[練習(xí)]
1、已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調(diào)性如何、
4、設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式、
(四)拓展延伸
1、有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個?
2、設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:
(1)F(x)=f(x)·g(x)的奇偶性、
(2)G(x)=|f(x)|+g(x)的奇偶性、
3、已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù)、
4、一個定義在R上的函數(shù),是否都可以表示為一個奇函數(shù)與一個偶函數(shù)的和的形式?
一、教學(xué)目標
【知識與技能】
理解函數(shù)的奇偶性及其幾何意義、
【過程與方法】
利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來解決問題、
【情感態(tài)度與價值觀】
體會指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、
二、教學(xué)重難點
【重點】
函數(shù)的奇偶性及其幾何意義
【難點】
判斷函數(shù)的奇偶性的方法與格式、
三、教學(xué)過程
(一)導(dǎo)入新課
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:
1以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標系中的圖形;
問題:將第一象限和第二象限的圖形看成一個整體,則這個圖形可否作為某個函數(shù)y=f(x)的圖象,若能請說出該圖象具有什么特殊的性質(zhì)?函數(shù)圖象上相應(yīng)的點的坐標有什么特殊的關(guān)系?
答案:(1)可以作為某個函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對稱;
(2)若點(x,f(x))在函數(shù)圖象上,則相應(yīng)的點(-x,f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標互為相反數(shù)的點,它們的縱坐標一定相等、
(二)新課教學(xué)
1、函數(shù)的奇偶性定義
像上面實踐操作1中的圖象關(guān)于y軸對稱的函數(shù)即是偶函數(shù),操作2中的圖象關(guān)于原點對稱的函數(shù)即是奇函數(shù)、
(1)偶函數(shù)(evenfunction)
一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù)、
(學(xué)生活動):仿照偶函數(shù)的定義給出奇函數(shù)的定義
(2)奇函數(shù)(oddfunction)
一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù)、
注意:
1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);
2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則-x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱)、
2、具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對稱;
奇函數(shù)的圖象關(guān)于原點對稱、
3、典型例題
(1)判斷函數(shù)的奇偶性
例1、(教材P36例3)應(yīng)用函數(shù)奇偶性定義說明兩個觀察思考中的四個函數(shù)的奇偶性、(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)
解:(略)
總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:
1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點對稱;
2確定f(-x)與f(x)的關(guān)系;
3作出相應(yīng)結(jié)論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)、
(三)鞏固提高
1、教材P46習(xí)題1、3B組每1題
解:(略)
說明:函數(shù)具有奇偶性的一個必要條件是,定義域關(guān)于原點對稱,所以判斷函數(shù)的奇偶性應(yīng)應(yīng)首先判斷函數(shù)的定義域是否關(guān)于原點對稱,若不是即可斷定函數(shù)是非奇非偶函數(shù)、
2、利用函數(shù)的奇偶性補全函數(shù)的圖象
(教材P41思考題)
規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對稱;
奇函數(shù)的圖象關(guān)于原點對稱、
說明:這也可以作為判斷函數(shù)奇偶性的依據(jù)、
(四)小結(jié)作業(yè)
本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關(guān)于原點對稱、單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個難點,需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個性質(zhì)、
課本P46習(xí)題1、3(A組)第9、10題,B組第2題、
四、板書設(shè)計
函數(shù)的奇偶性
一、偶函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù)、
二、奇函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù)、
三、規(guī)律:
偶函數(shù)的`圖象關(guān)于y軸對稱;
奇函數(shù)的圖象關(guān)于原點對稱、
一.學(xué)習(xí)目標
1.經(jīng)歷對實際問題情境分析確定二次函數(shù)表達式的過程,體會二次函數(shù)意義。
2.了解二次函數(shù)關(guān)系式,會確定二次函數(shù)關(guān)系式中各項的系數(shù)。
二.知識導(dǎo)學(xué)
(一)情景導(dǎo)學(xué)
1.一粒石子投入水中,激起的波紋不斷向外擴展,擴大的圓的面積S與半徑r之間的函數(shù)關(guān)系式是 。
2.用16米長的籬笆圍成長方形的生物園飼養(yǎng)小兔,怎樣圍可使小兔的活動范圍較大?
設(shè)長方形的長為x 米,則寬為 米,如果將面積記為y平方米,那么變量y與x之間的函數(shù)關(guān)系式為 .
3.要給邊長為x米的正方形房間鋪設(shè)地板,已知某種地板的價格為每平方米240元,踢腳線的價格為每米30元,如果其他費用為1000元,門寬0.8米,那么總費用y為多少元?
在這個問題中,地板的費用與 有關(guān),為 元,踢腳線的費用與 有關(guān),為 元;其他費用固定不變?yōu)?元,所以總費用y(元)與x(m)之間的函數(shù)關(guān)系式是 。
(二)歸納提高。
上述函數(shù)函數(shù)關(guān)系有哪些共同之處?它們與一次函數(shù)、反比例函數(shù)的關(guān)系式有什么不同?
一般地,我們稱 表示的函數(shù)為二次函數(shù)。其中 是自變量, 函數(shù)。
一般地,二次函數(shù) 中自變量x的取值范圍是 ,你能說出上述三個問題中自變量的取值范圍嗎?
(三)典例分析
例1、判斷:下列函數(shù)是否為二次函數(shù),如果是,指出其中常數(shù)a.b.c的值.
(1) y=1— (2)y=x(x-5) (3)y= - x+1 (4) y=3x(2-x)+ 3x2
(5)y= (6) y= (7)y= x4+2x2-1 (8)y=ax2+bx+c
例2.當(dāng)k為何值時,函數(shù) 為二次函數(shù)?
例3.寫出下列各函數(shù)關(guān)系,并判斷它們是什么類型的函數(shù).
⑴正方體的表面積S(cm2)與棱長a(cm)之間的函數(shù)關(guān)系;
⑵圓的面積y(cm2)與它的周長x(cm)之間的函數(shù)關(guān)系;
⑶某種儲蓄的年利率是1.98%,存入10000元本金,若不計利息,求本息和y(元)與所存年數(shù)x之間的函數(shù)關(guān)系;
⑷菱形的兩條對角線的和為26cm,求菱形的面積S(cm2)與一對角線長x(cm)之間的函數(shù)關(guān)系.
三.鞏固拓展
1.已知函數(shù) 是二次函數(shù),求m的值.
2. 已知二次函數(shù) ,當(dāng)x=3時,y= -5,當(dāng)x= -5時,求y的值.
3.一個長方形的長是寬的1.6倍,寫出這個長方形的面積S與寬x之間函數(shù)關(guān)系式。
4.一個圓柱的高與底面直徑相等,試寫出它的表面積S與底面半徑r之間的函數(shù)關(guān)系式
5.用一根長為40 cm的鐵絲圍成一個半徑為r的扇形,求扇形的面積y與它的半徑x之間的函數(shù)關(guān)系式.這個函數(shù)是二次函數(shù)嗎?請寫出半徑r的取值范圍.
6. 一條隧道的截面如圖所示,它的上部是一個半圓,下部是一個矩形,矩形的一邊長2.5 m.
⑴求隧道截面的面積S(m2)關(guān)于上部半圓半徑r(m)的函數(shù)關(guān)系式;
⑵求當(dāng)上部半圓半徑為2 m時的截面面積.(π取3.14,結(jié)果精確到0.1 m2)
課堂練習(xí):
1.判斷下列函數(shù)是否是二次函數(shù),若是,請指出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項。
(1)y=2-3x2; (2)y=x2+2x3; (3)y= ; (4)y= .
2.寫出多項式的對角線的條數(shù)d與邊數(shù)n之間的函數(shù)關(guān)系式。
3.某產(chǎn)品年產(chǎn)量為30臺,計劃今后每年比上一年的產(chǎn)量增長x%,試寫出兩年后的產(chǎn)量y(臺)與x的函數(shù)關(guān)系式。
4.圓柱的高h(cm)是常量,寫出圓柱的體積v(cm3)與底面周長C(cm)之間的函數(shù)關(guān)系式。
課外作業(yè):
A級:
1.下列函數(shù):(1)y=3x2+ +1;(2)y= x2+5;(3)y=(x-3)2-x2;(4)y=1+x- ,屬于二次函數(shù)的
是 (填序號).
2.函數(shù)y=(a-b)x2+ax+b是二次函數(shù)的條件為 .
3.下列函數(shù)關(guān)系中,滿足二次函數(shù)關(guān)系的是( )
A.圓的周長與圓的半徑之間的關(guān)系; B.在彈性限度內(nèi),彈簧的長度與所掛物體質(zhì)量的關(guān)系;
C.圓柱的高一定時,圓柱的體積與底面半徑的關(guān)系;
D.距離一定時,汽車行駛的速度與時間之間的關(guān)系.
4.某超市1月份的營業(yè)額為200萬元,2、3月份營業(yè)額的月平均增長率為x,求第一季度營業(yè)額y(萬元)與x的函數(shù)關(guān)系式.
B級:
5、一塊直角三角尺的形狀與尺寸如圖,若圓孔的半徑為 ,三角尺的厚度為16,求這塊三角尺的體積V與n的函數(shù)關(guān)系式.
6.某地區(qū)原有20個養(yǎng)殖場,平均每個養(yǎng)殖場養(yǎng)奶牛20xx頭。后來由于市場原因,決定減少養(yǎng)殖場的數(shù)量,當(dāng)養(yǎng)殖場每減少1個時,平均每個養(yǎng)殖場的奶牛數(shù)將增加300頭。如果養(yǎng)殖場減少x個,求該地區(qū)奶牛總數(shù)y(頭)與x(個)之間的函數(shù)關(guān)系式。
C級:
7.圓的半徑為2cm,假設(shè)半徑增加xcm 時,圓的面積增加到y(tǒng)(cm2).
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)圓的半徑分別增加1cm、 時,圓的面積分別增加多少?
(3)當(dāng)圓的面積為5πcm2時,其半徑增加了多少?
8.已知y+2x2=kx(x-3)(k≠2).
(1)證明y是x的二次函數(shù);
(2)當(dāng)k=-2時,寫出y與x的函數(shù)關(guān)系式。
三角函數(shù)優(yōu)秀教學(xué)設(shè)計范文
作為一名辛苦耕耘的教育工作者,編寫教學(xué)設(shè)計是必不可少的,借助教學(xué)設(shè)計可以促進我們快速成長,使教學(xué)工作更加科學(xué)化。一份好的教學(xué)設(shè)計是什么樣子的呢?下面是小編為大家整理的三角函數(shù)優(yōu)秀教學(xué)設(shè)計范文,歡迎大家分享。
(一)概念及其解析
這一欄目的要點是:闡述概念的內(nèi)涵;在揭示內(nèi)涵的基礎(chǔ)上說明本課內(nèi)容的核心所在;必要時要對概念在中學(xué)數(shù)學(xué)中的地位進行分析;明確概念所反映的數(shù)學(xué)思想方法。在此基礎(chǔ)上確定教學(xué)重點。
概念
描述周期現(xiàn)象的數(shù)學(xué)模型,最基本而重要的背景:勻速圓周運動。
定義域:(弧度制下)任意角的集合;對應(yīng)法則:任意角α的終邊與單位圓的交點坐標為(x,y),正弦函數(shù)為y=sinα,余弦函數(shù)為x=cosα;值域:[-1,1]。
概念解析
核心:對應(yīng)法則。
思想方法:函數(shù)思想--一般函數(shù)概念的指導(dǎo)作用;形與數(shù)結(jié)合--象限角概念基礎(chǔ)上;模型思想--單位圓上的點隨角的變化而變化的規(guī)律的數(shù)學(xué)刻畫。
重點:理解任意角三角函數(shù)的對應(yīng)法則--需要一定時間。
(二)目標和目標解析
一堂課的教學(xué)目標是教學(xué)目的的具體化,是教學(xué)活動每一階段所要實現(xiàn)的教學(xué)結(jié)果,是衡量教學(xué)質(zhì)量的標準。當(dāng)前,許多教師沒有意識到制定教學(xué)目標的重要性,他們往往只從“課標”或“教參”上抄錄,而且表述目標時,“八股”現(xiàn)象嚴重。我們主張,課堂教學(xué)目標不以“三維目標”(知識與技能、過程與方法、情感態(tài)度價值觀)或“四維目標”(知識技能、數(shù)學(xué)思考、解決問題、情感態(tài)度)分列,而以內(nèi)容及由內(nèi)容反映的思想方法為載體,將數(shù)學(xué)能力、情感態(tài)度等隱性目標融于其中,并用了解、理解、掌握等及相應(yīng)的行為動詞經(jīng)歷、體驗、探究等表述目標,特別要闡明經(jīng)過教學(xué),學(xué)生將有哪些變化,會做哪些以前不會做的事。
為了更加清晰地把握教學(xué)目標,以給課堂中教和學(xué)的行為做出準確定向,需要對教學(xué)目標中的關(guān)鍵詞進行解析,即要解析了解、理解、掌握、經(jīng)歷、體驗、探究等的具體含義,其中特別要明確當(dāng)前內(nèi)容所反映的數(shù)學(xué)思想方法的教學(xué)目標。
教學(xué)目標:
理解任意角三角函數(shù)(正弦、余弦、正切)的定義。
目標解析:
(1)知道三角函數(shù)研究的問題;
(2)經(jīng)歷“單位圓法”定義三角函數(shù)的過程;
(3)知道三角函數(shù)的對應(yīng)法則、自變量(定義域)、函數(shù)值(值域);
(4)體會定義三角函數(shù)過程中的數(shù)形結(jié)合、數(shù)學(xué)模型、化歸等思想方法.
(三)教學(xué)問題診斷分析
這一欄目的要點是:教師根據(jù)自己以往的教學(xué)經(jīng)驗,對學(xué)生認知狀況的分析,以及數(shù)學(xué)知識內(nèi)在的邏輯關(guān)系,在思維發(fā)展理論的指導(dǎo)下,對本內(nèi)容在教與學(xué)中可能遇到的困難進行預(yù)測,并對出現(xiàn)困難的原因進行分析。在上述分析的基礎(chǔ)上指出教學(xué)難點。
教學(xué)問題診斷和教學(xué)難點:
認知基礎(chǔ)
(1)函數(shù)的知識--“理解三角函數(shù)定義”到底要理解什么?--三要素;
(2)銳角三角函數(shù)的定義--背景(直角三角形)、對應(yīng)關(guān)系(角度 比值)、解決的問題(解三角形)--側(cè)重幾何特性;
(3)任意角、弧度制、單位圓--在直角坐標系下討論問題的經(jīng)驗,借助單位圓使問題簡化的經(jīng)驗。
認知分析
(1)三角函數(shù)是一類特殊函數(shù),“三角函數(shù)”是“函數(shù)”的下位概念,用“概念同化”方式學(xué)習(xí),要理解“三要素”的具體內(nèi)涵,其中核心是“對應(yīng)法則”;
(2)從銳角三角函數(shù)到任意角三角函數(shù),一種“形式推廣”,載體要從直角三角形過渡到直角坐標系,其核心是要明確用坐標定義三角函數(shù)的思想方法;
(3)體會將“任意點”化歸到“單位圓上的點”的意義--求簡的思想。
教學(xué)難點
(1)先要在弧度制下(用單位圓的.半徑度量角)實現(xiàn)角的集合與實數(shù)集的一一對應(yīng),再實現(xiàn)數(shù)到坐標的對應(yīng),不是直接的對應(yīng),會造成理解困難;
(2)銳角三角函數(shù)的“比值”過渡到坐標表示的比值,需要從函數(shù)角度重新認識問題;
(3)求簡到“單位圓上點的坐標”,思想方法深刻,學(xué)生不易理解。
(四)教學(xué)過程設(shè)計
在設(shè)計教學(xué)過程時,如下問題需要予以關(guān)注:
強調(diào)教學(xué)過程的內(nèi)在邏輯線索;
要給出學(xué)生思考和操作的具體描述;
要突出核心概念的思維建構(gòu)和技能操作過程,突出思想方法的領(lǐng)悟過程分析;
以“問題串”方式呈現(xiàn)為主,應(yīng)當(dāng)認真思考每一問題的設(shè)計意圖、師生活動預(yù)設(shè),以及需要概括的概念要點、思想方法,需要進行的技能訓(xùn)練,需要培養(yǎng)的能力,等。
另外,要根據(jù)內(nèi)容特點設(shè)計教學(xué)過程,如基于問題解決的設(shè)計,講授式教學(xué)設(shè)計,自主探究式教學(xué)設(shè)計,合作交流式教學(xué)設(shè)計,等。
教學(xué)過程設(shè)計
1.復(fù)習(xí)提問
請回答下列問題:
(1)前面學(xué)習(xí)了任意角,你能說說任意角概念與平面幾何中的角的概念有什么不同嗎?
(2)引進象限角概念有什么好處?
(3)在度量角的大小時,弧度制與角度制有什么區(qū)別?
(4)我們是怎樣簡化弧度制的度量單位的?
(設(shè)計意圖:從為學(xué)習(xí)三角函數(shù)概念服務(wù)的角度復(fù)習(xí);關(guān)注的是思想方法。)
2.先行組織者
我們知道,函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型。例如指數(shù)函數(shù)描述了“指數(shù)爆炸”,對數(shù)函數(shù)描述了“對數(shù)增長”等。圓周運動是一種重要的運動,其中最基本的是一個質(zhì)點繞點O 做勻速圓周運動,其變化規(guī)律該用什么函數(shù)模型描述呢?“任意角的三角函數(shù)”就是一個刻畫這種“周而復(fù)始”的變化規(guī)律的函數(shù)模型。
(設(shè)計意圖:解決“學(xué)習(xí)的必要性”問題,明確要研究的問題。)
3.概念教學(xué)過程
問題1 對于三角函數(shù)我們并不陌生,初中學(xué)過銳角三角函數(shù),你能說說它的自變量和對應(yīng)關(guān)系各是什么嗎?任意畫一個銳角 α,你能借助三角板,根據(jù)銳角三角函數(shù)的定義找出sinα的值嗎?
(設(shè)計意圖:從函數(shù)角度重新認識銳角三角函數(shù)定義,突出“與點的位置無關(guān)”。)
問題2 你能借助象限角的概念,用直角坐標系中點的坐標表示銳角三角函數(shù)嗎?
(設(shè)計意圖:比值“坐標化”。)
問題3 上述表達式比較復(fù)雜,你能設(shè)法將它化簡嗎?
(設(shè)計意圖:為“單位圓法”作鋪墊。學(xué)生答出“取點P(x,y)使x2+y2=1”后追問“為什么可以這樣做?)”
教師講授:類比上述做法,設(shè)任意角α的終邊與單位圓交點為P(x,y),定義正弦函數(shù)為y=sinα,余弦函數(shù)為x=cosα。
(設(shè)計意圖:“定義”是一種“規(guī)定”;把精力放在定義合理性的理解上。)
問題4 你能說明上述定義符合函數(shù)定義的要求嗎?
(設(shè)計意圖:讓學(xué)生用函數(shù)的三要素說明定義的合理性,以此進一步明確三角函數(shù)的對應(yīng)法則、定義域和值域。)
例1 分別求自變量π/2,π,- π/3所對應(yīng)的正弦函數(shù)值和余弦函數(shù)值。
(設(shè)計意圖:讓學(xué)生熟悉定義,從中概括出用定義解題的步驟。)
例2 角α的終邊過P(1/2, - /2),求它的三角函數(shù)值。
4.概念的“精致”
通過概念的“精致”,引導(dǎo)學(xué)生認識概念的細節(jié),并將新概念納入到概念系統(tǒng)中去,使學(xué)生全面理解三角函數(shù)概念。這里包括如下內(nèi)容:
三角函數(shù)值的符號問題;
終邊與坐標軸重合時的三角函數(shù)值;
終邊相同的角的同名三角函數(shù)值;
與銳角三角函數(shù)的比較:因襲與擴張;
從“形”的角度看三角函數(shù)--三角函數(shù)線,聯(lián)系的觀點;
終邊上任意一點的坐標表示的三角函數(shù);
還可以引導(dǎo)學(xué)生思考三角函數(shù)的“多元聯(lián)系表示”,例如,把實數(shù)軸想象為一條柔軟的細線,原點固定在單位點A(1,0),數(shù)軸的正半軸逆時針纏繞在單位圓上,負半軸順時針纏繞在單位圓上,那么數(shù)軸上的任意一個實數(shù)(點)t 被纏繞到單位圓上的點 P(cost,sint)。
5.課堂小結(jié)
(1)問題的提出--自然、水到渠成,思想高度--函數(shù)模型;
(2)研究的思想方法--與銳角三角函數(shù)的因襲與擴張的關(guān)系,化歸為最簡單也是最本質(zhì)的模型,數(shù)形結(jié)合;
(3)歸納概括概念的內(nèi)涵,明確自變量、對應(yīng)法則、因變量;
(4)用概念作判斷的步驟、注意事項等。
(五)目標檢測設(shè)計
一般采用習(xí)題、練習(xí)的方式進行檢測。要明確每一個(組)習(xí)題或練習(xí)的設(shè)計目的,加強檢測的針對性、有效性。練習(xí)應(yīng)當(dāng)由簡單到復(fù)雜、由單一到綜合,循序漸進地進行。當(dāng)前,要特別注意摒除“一步到位”的做法。過早給綜合題、難題有害無益,基礎(chǔ)不夠的題目更是貽害無窮。題目出不好、練習(xí)安排不合理是老師專業(yè)素養(yǎng)低的表現(xiàn)之一。
本課習(xí)題只要完成教科書上的相關(guān)題目即可,這里從略。
一、教材分析
這節(jié)課是在初中學(xué)習(xí)的銳角三角函數(shù)的基礎(chǔ)上,進一步學(xué)習(xí)任意角的三角函數(shù)。任意角的三角函數(shù)通常是借助直角坐標系來定義的。三角函數(shù)的定義是本章教學(xué)內(nèi)容的基本概念和重要概念,也是學(xué)習(xí)后續(xù)內(nèi)容的基礎(chǔ),更是學(xué)好本章內(nèi)容的關(guān)鍵。因此,要重點地體會、理解和掌握三角函數(shù)的定義。
二、學(xué)生情況分析
本課時研究的是任意角的三角函數(shù),學(xué)生在初中階段曾研究過銳角三角函數(shù),其研究范圍是銳角;
其研究方法是幾何的,沒有坐標系的參與;
其研究目的是為解直角三角形服務(wù)。以上三點都是與本課時不同的,因此在教學(xué)過程中要發(fā)展學(xué)生的已有認知經(jīng)驗,發(fā)揮其正遷移。
三、教學(xué)目標
知識與能力:借助單位圓理解意角的三角函數(shù)(正弦、余弦、正切)的`定義。(能根據(jù)任意角的三角函數(shù)的定義求出具體的角的各三角函數(shù)值。)
過程與方法:在學(xué)習(xí)的過程中,培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的思路。
情感態(tài)度與價值觀:讓學(xué)生積極參與知識的形成過程,經(jīng)歷知識的“發(fā)現(xiàn)”過程,獲得發(fā)現(xiàn)的“經(jīng)驗”。
四、教學(xué)重點、難點分析
重點:理解任意角三角函數(shù)(正弦、余弦、正切)的定義。
難點:通過坐標求任意角的三角函數(shù)值。
五、教學(xué)方法與策略
教學(xué)過程中采用學(xué)生自主探索、動手實踐、合作交流、師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生參與、揭示本質(zhì)、經(jīng)歷過程。根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認知特點,本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學(xué)。
六、教學(xué)過程
問題1:現(xiàn)在請你回憶初中學(xué)過的銳角三角函數(shù)的定義,并思考一個問題:如果將銳角置于平面直角坐標系中,如何用直角坐標系中角的終邊上的點的坐標表示銳角三角函數(shù)呢?
設(shè)計意圖:將已有知識坐標化,分化難點。用新的觀點再認識學(xué)生的已有知識經(jīng)驗,發(fā)揮其正遷移作用,同時使本課時的學(xué)習(xí)與學(xué)生的已有知識經(jīng)驗緊密聯(lián)系,使知識有一個熟悉的起點,扎實的固著點。)
預(yù)計的回答:學(xué)生可以回憶出初中學(xué)過的銳角三角函數(shù)的定義,但是在用坐標語言表述時可能會出現(xiàn)困難——即使將角置于坐標系中但是仍然習(xí)慣用三角形邊的比值表示銳角三角函數(shù),需要教師引導(dǎo)學(xué)生將之轉(zhuǎn)換為用終邊上的點的坐標表示銳角三角函數(shù)。
問題2:回憶弧度制中1弧度角的幾何解釋,它是借助于單位圓給出的,能否從中得到啟示將上述定義的形式化簡,化簡的依據(jù)是什么?寫出最簡單的形式。
設(shè)計意圖:引入單位圓。深化對單位圓作用的認識,用數(shù)學(xué)的簡潔美引導(dǎo)學(xué)生進行研究,為定義的拓展奠定基礎(chǔ)。該問題與問題1結(jié)合,分步推進,降低難度,基本尊重教材的處理方式。
預(yù)計的困難:由于學(xué)生只接觸過一次單位圓,對它所能起的作用只有一般的了解,所以需要教師的引導(dǎo)。也可以引導(dǎo)學(xué)生從形式上對上述定義化簡,使得分母為1,之后通過分母的幾何意義將之與單位圓結(jié)合起來。
單位圓中定義銳角三角函數(shù):點P的坐標為(x,y),那么銳角α的三角函數(shù)可以用坐標表示為:
[sina=MPOP=y],[cosa=OMOP=x],[tana=MPOM=yx]。
問題3:大家現(xiàn)在能不能給出任意角的三角函數(shù)的定義。
設(shè)計意圖:引導(dǎo)學(xué)生在借助單位圓定義銳角三角函數(shù)的基礎(chǔ)上,進一步給出任意角三角函數(shù)的定義。
有學(xué)生給出任意角三角函數(shù)的定義,教師進行整理。
例1:(P12)例2:(P12)
學(xué)生練習(xí):P15練習(xí)1、2。
小結(jié):任意角的三角函數(shù)的定義。
作業(yè):P20 A組1、2。
學(xué)習(xí)目標1、函數(shù)奇偶性的概念
2、由函數(shù)圖象研究函數(shù)的奇偶性
3、函數(shù)奇偶性的判斷
重點:能運用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性
難點:理解函數(shù)的奇偶性
知識梳理:
1、軸對稱圖形:
2、中心對稱圖形:
【概念探究】
1、畫出函數(shù),與的圖像;并觀察兩個函數(shù)圖像的對稱性。
2、求出,時的函數(shù)值,寫出。
結(jié)論:
3、奇函數(shù):___________________________________________________
4、偶函數(shù):______________________________________________________
【概念深化】
(1)、強調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。
(2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點對稱。
5、奇函數(shù)與偶函數(shù)圖像的對稱性:
如果一個函數(shù)是奇函數(shù),則這個函數(shù)的圖像是以坐標原點為對稱中心的__________。反之,如果一個函數(shù)的圖像是以坐標原點為對稱中心的中心對稱圖形,則這個函數(shù)是___________。
如果一個函數(shù)是偶函數(shù),則這個函數(shù)的圖像是以軸為對稱軸的__________。反之,如果一個函數(shù)的圖像是關(guān)于軸對稱,則這個函數(shù)是___________。
6、根據(jù)函數(shù)的奇偶性,函數(shù)可以分為____________________________________、
題型一:判定函數(shù)的奇偶性。
例1、判斷下列函數(shù)的奇偶性:
(1)(2)(3)
(4)(5)
練習(xí):教材第49頁,練習(xí)A第1題
總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?
題型二:利用奇偶性求函數(shù)解析式
例2:若f(x)是定義在R上的奇函數(shù),當(dāng)x0時,f(x)=x(1-x),求當(dāng)時f(x)的解析式。
練習(xí):若f(x)是定義在R上的奇函數(shù),當(dāng)x0時,f(x)=x|x-2|,求當(dāng)x0時f(x)的解析式。
已知定義在實數(shù)集上的奇函數(shù)滿足:當(dāng)x0時,,求的表達式
題型三:利用奇偶性作函數(shù)圖像
例3研究函數(shù)的性質(zhì)并作出它的圖像
練習(xí):教材第49練習(xí)A第3,4,5題,練習(xí)B第1,2題
教學(xué)目標:了解奇偶性的含義,會判斷函數(shù)的奇偶性。能證明一些簡單函數(shù)的奇偶性。弄清函數(shù)圖象對稱性與函數(shù)奇偶性的關(guān)系。
重點:判斷函數(shù)的奇偶性
難點:函數(shù)圖象對稱性與函數(shù)奇偶性的關(guān)系。
一、復(fù)習(xí)引入
1、函數(shù)的單調(diào)性、最值
2、函數(shù)的奇偶性
(1)奇函數(shù)
(2)偶函數(shù)
(3)與圖象對稱性的關(guān)系
(4)說明(定義域的要求)
二、例題分析
例1、判斷下列函數(shù)是否為偶函數(shù)或奇函數(shù)
(1)(2)
(3)(4)
例2、證明函數(shù)在R上是奇函數(shù)。
例3、試判斷下列函數(shù)的奇偶性
三、隨堂練習(xí)
1、函數(shù)()
是奇函數(shù)但不是偶函數(shù)是偶函數(shù)但不是奇函數(shù)
既是奇函數(shù)又是偶函數(shù)既不是奇函數(shù)又不是偶函數(shù)
2、下列4個判斷中,正確的是_______、
(1)既是奇函數(shù)又是偶函數(shù);
(2)是奇函數(shù);
(3)是偶函數(shù);
(4)是非奇非偶函數(shù)
3、函數(shù)的圖象是否關(guān)于某直線對稱?它是否為偶函數(shù)?
一、 重視每一堂復(fù)習(xí)課 數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會,那就是復(fù)習(xí)課比新課難上。
二、 重視每一個學(xué)生 學(xué)生是課堂的主體,離開學(xué)生談?wù)n堂效率肯定是行不通的。而我校的學(xué)生數(shù)學(xué)基礎(chǔ)大多不太好,上課的積極性普遍不高,對學(xué)習(xí)的熱情也不是很高,這些都是十分現(xiàn)實的事情,既然現(xiàn)狀無法更改,那么我們只能去適應(yīng)它,這就對我們老師提出了更高的要求
三、做好課外與學(xué)生的溝通,學(xué)生對你教學(xué)理念認同和教學(xué)常規(guī)配合與否,功夫往往在課外,只有在課外與學(xué)生多進行交流和溝通,和學(xué)生建立起比較深厚的師生情誼,那么最頑皮的學(xué)生也能在他喜歡的老師的課堂上聽進一點
四、要多了解學(xué)生。你對學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時了解每個學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計劃和備下一堂課,也有利于你更好的改進教學(xué)方法。
2二次函數(shù)教學(xué)方法一
一、 立足教材,夯實雙基:進行中考數(shù)學(xué)復(fù)習(xí)的時候,要立足于教材,重新梳理教材中的典例和習(xí)題,就顯得尤為重要.并且要讓學(xué)生在掌握的基礎(chǔ)上,能夠做到知識的延伸和遷移,讓解題方法、技巧在學(xué)生遇到相似問題時,能在頭腦中再現(xiàn)
二、 立足課堂,提高效率:做到教師入題海,學(xué)生出題海.教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對題目的重組。
三、教師在設(shè)計教學(xué)目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達到最佳的復(fù)習(xí)效果.
四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動力,在上復(fù)習(xí)課時尤為重要.因此,我們在授課的過程中,在關(guān)注知識復(fù)習(xí)的同時,也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗成功的快感.這樣他們才會更有興趣的學(xué)習(xí)下去.
3二次函數(shù)教學(xué)方法二
1.質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識,必須鼓勵學(xué)生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關(guān)系的重要的數(shù)學(xué)模型。
3.學(xué)生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學(xué)生的隨時“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關(guān)知識分析和解決簡單的實際問題。
4二次函數(shù)教學(xué)方法三
1.教學(xué)案例、教學(xué)設(shè)計、教學(xué)實錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計)是事先設(shè)想的教育教學(xué)思路,是對準備實施的教育措施的簡要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。
2.教學(xué)案例與教學(xué)實錄:它們同樣是對教育教學(xué)情境的描述,但教學(xué)實錄是有聞必錄(事實判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
3.教學(xué)案例與敘事研究的聯(lián)系與區(qū)別:從“情景故事”的意義上講,教育敘事研究報告也是一種“教育案例”,但“教學(xué)案例”特指有典型意義的、包含疑難問題的、多角度描述的經(jīng)過研究并加上作者反思(或自我點評)的教學(xué)敘事;
4.教學(xué)案例必須從教學(xué)任務(wù)分析的目標出發(fā),有意識地選擇有關(guān)信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
相信《函數(shù)優(yōu)秀教案集錦》一文能讓您有很多收獲!“幼兒教師教育網(wǎng)”是您了解幼兒園教案,工作計劃的必備網(wǎng)站,請您收藏yjs21.com。同時,編輯還為您精選準備了函數(shù)優(yōu)秀教案專題,希望您能喜歡!
相關(guān)推薦
以下內(nèi)容“四年級數(shù)學(xué)優(yōu)秀教案”是由幼兒教師教育網(wǎng)的編輯給您提供的,希望對大家有所幫助。老師上課前有教案課件是工作負責(zé)的一種表現(xiàn),寫好教案課件是每位老師必須具備的基本功。要知道寫好教案課件,也能避免老師漏掉一些重點內(nèi)容。...
幼兒故事的講解需要父母與教師的引導(dǎo),培養(yǎng)孩子正確的價值觀,父母與老師需要跟孩子做朋友,幫助并引導(dǎo)孩子,因為很多時候,幼兒不好的行為習(xí)慣,基本上都是在幼兒時期養(yǎng)成的!那么,給幼兒挑選故事書,有哪些是父母必做的功課呢?考慮到你的需求,小編特意整理了“故事優(yōu)秀教案集錦”,我們后續(xù)還將不斷提供這方面的內(nèi)容。...
教案和課件是教師工作中不可或缺的一部分,但其中的知識點設(shè)計也是至關(guān)重要的。而學(xué)生的反饋可以成為衡量教學(xué)成效的重要指標。在本篇文章中,我們將分享有關(guān)“初中優(yōu)秀教案”的相關(guān)內(nèi)容,希望對您有所幫助!...
以下“比的優(yōu)秀教案”一文是欄目小編為您準備。在給學(xué)生上課之前老師早早準備好教案課件,因此教案課件不是隨便寫寫就可以的。?教學(xué)過程中注重創(chuàng)造的教師可以更好地實現(xiàn)教育目標。歡迎閱讀,希望你能夠喜歡并分享!...
為了教學(xué)更有順利,老師會需要提前準備教案課件,因此教案課件不是隨便寫寫就可以的。?課堂上的學(xué)生反應(yīng)是衡量教學(xué)成果的重要指標。幼兒教師教育網(wǎng)的編輯花時間專門編輯了故鄉(xiāng)優(yōu)秀教案,如果對這個話題感興趣的話,請關(guān)注本站!...
最新更新