我們聽(tīng)了一場(chǎng)關(guān)于“不等式與不等式組教案”的演講讓我們思考了很多。老師會(huì)對(duì)課本中的主要教學(xué)內(nèi)容整理到教案課件中,所以老師寫(xiě)教案可不能隨便對(duì)待。教案是評(píng)估學(xué)生學(xué)習(xí)效果的有效依據(jù)。經(jīng)過(guò)閱讀本頁(yè)你的認(rèn)識(shí)會(huì)更加全面!
第一章
三角形的證明
1.等腰三角形
(一)一、學(xué)生知識(shí)狀況分析
在八年級(jí)上冊(cè)第七章《平行線的證明》,學(xué)生已經(jīng)感受了證明的必要性,并通過(guò)平行線有關(guān)命題的證明過(guò)程,習(xí)得了一些基本的證明方法和基本規(guī)范,積累了一定的證明經(jīng)驗(yàn);在七年級(jí)下,學(xué)生也已經(jīng)探索得到了有關(guān)三角形全等和等腰三角形的有關(guān)命題,這些都為證明本節(jié)有關(guān)命題做了很好的鋪墊。
二、教學(xué)任務(wù)分析
本節(jié)將進(jìn)一步回顧和證明全等三角形的有關(guān)定理,并進(jìn)一步利用這些定理、公理證明等腰三角形的有關(guān)定理,由于具備了上面所說(shuō)的活動(dòng)經(jīng)驗(yàn)和認(rèn)知基礎(chǔ),為此,本節(jié)可以讓學(xué)生在回顧的基礎(chǔ)上,自主地尋求命題的證明,為此,確定本節(jié)課的教學(xué)目標(biāo)如下:
1.知識(shí)目標(biāo):
理解作為證明基礎(chǔ)的幾條公理的內(nèi)容,應(yīng)用這些公理證明等腰三角形的性質(zhì)定理; 在證明過(guò)程中,進(jìn)一步感受證明過(guò)程,掌握推理證明的基本要求,明確條件和結(jié)論,能夠借助數(shù)學(xué)符號(hào)語(yǔ)言利用綜合法證明等腰三角形的性質(zhì)定理和判定定理;
熟悉證明的基本步驟和書(shū)寫(xiě)格式。2.能力目標(biāo):
經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過(guò)程,讓學(xué)生進(jìn)一步體會(huì)證明是探索活動(dòng)的自然延續(xù)和必要發(fā)展,發(fā)展學(xué)生的初步的演繹邏輯推理的能力;
鼓勵(lì)學(xué)生在交流探索中發(fā)現(xiàn)證明方法的多樣性,提高邏輯思維水平; 3.情感與價(jià)值目標(biāo)
啟發(fā)引導(dǎo)學(xué)生體會(huì)探索結(jié)論和證明結(jié)論,及合情推理與演繹的相互依賴(lài)和相互補(bǔ)充的辯證關(guān)系;
培養(yǎng)學(xué)生合作交流的能力,以及獨(dú)立思考的良好學(xué)習(xí)習(xí)慣.4.教學(xué)重、難點(diǎn)
重點(diǎn):探索證明等腰三角形性質(zhì)定理的思路與方法,掌握證明的基本要求和方法;
難點(diǎn):明確推理證明的基本要求如明確條件和結(jié)論,能否用數(shù)學(xué)語(yǔ)言正確表達(dá)等。
三、教學(xué)過(guò)程分析
學(xué)生課前準(zhǔn)備:一張等腰三角形紙片(供上課折疊實(shí)驗(yàn)用); 教師課前準(zhǔn)備:制作好的幾何畫(huà)板課件.第一環(huán)節(jié):回顧舊知
導(dǎo)出公理
活動(dòng)內(nèi)容:提請(qǐng)學(xué)生回憶并整理已經(jīng)學(xué)過(guò)的8條基本事實(shí)中的5條: 1.兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行; 2.兩條平行線被第三條直線所截,同位角相等; 3.兩邊夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(SAS); 4.兩角及其夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(ASA); 5.三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(SSS);
在此基礎(chǔ)上回憶全等三角形的另一判別條件:1.(推論)兩角及其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(AAS),并要求學(xué)生利用前面所提到的公理進(jìn)行證明;2.回憶全等三角形的性質(zhì)。
活動(dòng)目的:經(jīng)過(guò)一個(gè)暑假,學(xué)生難免有所遺忘,因此,在第一課時(shí),回顧有關(guān)內(nèi)容,既是對(duì)前面學(xué)習(xí)內(nèi)容的一個(gè)簡(jiǎn)單梳理,也為后續(xù)有關(guān)證明做了知識(shí)準(zhǔn)備;證明這個(gè)推論,可以讓學(xué)生熟悉證明的基本要求和步驟,為后面的其他證明做好準(zhǔn)備。
活動(dòng)效果與注意事項(xiàng):由于有了前面的鋪墊,學(xué)生一般都能得到該推論的證明思路,但由于有了一個(gè)暑假的遺忘,可能部分學(xué)生的表述未必嚴(yán)謹(jǐn)、規(guī)范,教學(xué)中注意提請(qǐng)學(xué)生分析條件和結(jié)論,畫(huà)出簡(jiǎn)圖,寫(xiě)出已知和求證,并規(guī)范地寫(xiě)出證明過(guò)程。具體證明如下:
已知:如圖,∠A=∠D,∠B=∠E,BC=EF.求證:△ABC≌△DEF.證明:∵∠A=∠D,∠B=∠E(已知),又∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形內(nèi)角和等于180°),∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E),∴∠C=∠F(等量代換)。又BC=EF(已知),∴△ABC≌△DEF(ASA)。
BCEFAD第二環(huán)節(jié):折紙活動(dòng) 探索新知
活動(dòng)內(nèi)容:在提問(wèn):“等腰三角形有哪些性質(zhì)?以前是如何探索這些性質(zhì)的,你能再次通過(guò)折紙活動(dòng)驗(yàn)證這些性質(zhì)嗎?并根據(jù)折紙過(guò)程,得到這些性質(zhì)的證明嗎?”的基礎(chǔ)上,讓學(xué)生經(jīng)歷這些定理的活動(dòng)驗(yàn)證和證明過(guò)程。具體操作中,可以讓學(xué)生先獨(dú)自折紙觀察、探索并寫(xiě)出等腰三角形的性質(zhì),然后再以六人為小組進(jìn)行交流,互相彌補(bǔ)不足。
AAA
BDC→
BCD→
B(C)D活動(dòng)目的:通過(guò)折紙活動(dòng)過(guò)程,獲得有關(guān)命題的證明思路,并通過(guò)進(jìn)一步的整理,再次感受證明是探索的自然延伸和發(fā)展,熟悉證明的基本步驟和書(shū)寫(xiě)格式。
活動(dòng)效果與注意事項(xiàng):由于有了教師引導(dǎo)下學(xué)生的活動(dòng),以及具體的折紙操作,學(xué)生一般都能得到有關(guān)等腰三角形的性質(zhì)定理,當(dāng)然,可能部分學(xué)生得到的定理并不全面,在學(xué)生小組的交流中,通過(guò)同伴的互相補(bǔ)充,一般都可以得到所有性質(zhì)定理。當(dāng)然,在教學(xué)過(guò)程中,教師應(yīng)注意小組的巡視,提醒學(xué)生思考多種證明思路,思考不同的輔助線之間的關(guān)系從而得到“三線合一”。
第三環(huán)節(jié):明晰結(jié)論和證明過(guò)程
活動(dòng)內(nèi)容:在學(xué)生小組合作的基礎(chǔ)上,教師通過(guò)分析、提問(wèn),和學(xué)生一起完成以上兩個(gè)個(gè)性質(zhì)定理的證明,注意最好讓兩至三個(gè)學(xué)生板演證明,其余學(xué)生挑選其一證明.其后,教師通過(guò)課件匯總各小組的結(jié)果以及具體證明方法,給學(xué)生明晰證明過(guò)程。
(1)等腰三角形的兩個(gè)底角相等;
(2)等腰三角形頂角的平分線、底邊中線、底邊上高三條線重合
活動(dòng)目的:和學(xué)生一起完成性質(zhì)定理的證明,可以讓學(xué)生自主經(jīng)歷命題的證明過(guò)程;明晰證明過(guò)程,意圖給學(xué)生明晰一定的規(guī)范,起到一種引領(lǐng)作用;活動(dòng)2,則是前面命題的直接推論,力圖讓學(xué)生形成拓廣命題的意識(shí),同時(shí)也是一個(gè)很好的鞏固練習(xí)。
第四環(huán)節(jié):隨堂練習(xí)
鞏固新知
活動(dòng)內(nèi)容:學(xué)生自主完成P4第2題:如圖(圖略),在△ABD中, AC⊥BD,垂足為C,AC=BC=CD,(1)求證:△ABD是等腰三角形;(2)求∠BAD的度數(shù)。
活動(dòng)目的:鞏固全等三角形判定公理的應(yīng)用,復(fù)習(xí)等腰三角形“等邊對(duì)等角”的用法。
第五環(huán)節(jié):課堂小結(jié)
活動(dòng)內(nèi)容:讓學(xué)生暢談收獲,包括具體結(jié)論以及其中的思想方法等?;顒?dòng)目的:形成及時(shí)總結(jié)語(yǔ)反思的意識(shí)與習(xí)慣,提高學(xué)生能力。
活動(dòng)效果與注意事項(xiàng):教師注意對(duì)學(xué)生的感想進(jìn)行適當(dāng)?shù)囊龑?dǎo),并在學(xué)生交流的基礎(chǔ)上,明晰部分收獲供學(xué)生共享,如:
1、具體有關(guān)性質(zhì)定理;
2、通過(guò)折紙活動(dòng)對(duì)獲得的定理給予了嚴(yán)格的證明,為今后解決有關(guān)等腰三角形的問(wèn)題提供了豐富的理論依據(jù).
3、體會(huì)了證明一個(gè)命題的嚴(yán)格的要求,體會(huì)了證明的必要性.
第六環(huán)節(jié):布置作業(yè)
P4習(xí)題
1-6.四、教學(xué)反思
本節(jié)關(guān)注學(xué)生已有活動(dòng)經(jīng)驗(yàn)的回顧過(guò)程,關(guān)注了 “探索-發(fā)現(xiàn)-猜想-證明”的活動(dòng)過(guò)程,關(guān)注了學(xué)生自主探究過(guò)程,學(xué)生學(xué)習(xí)的主體性發(fā)揮較好,應(yīng)該說(shuō)取得了較好的教學(xué)效果。當(dāng)然,在具體活動(dòng)中,如何在學(xué)生活動(dòng)與規(guī)范表達(dá)之間形成一個(gè)恰當(dāng)?shù)钠胶?,具體各部分時(shí)間比例的分配可能還需要根據(jù)班級(jí)學(xué)生具體狀況進(jìn)行適度的調(diào)整。
1.了解不等式及一元一次不等式概念。
2.理解不等式的解、解集,能正確表示不等式的解集。
通過(guò)類(lèi)比等式的對(duì)應(yīng)知識(shí),探索不等式的概念和解,體會(huì)不等式與等式的異同,初步掌握類(lèi)比的思想方法。
1.經(jīng)歷把實(shí)際問(wèn)題抽象為不等式的過(guò)程,能夠列出不等關(guān)系式。
2.初步體會(huì)不等式(組)是刻畫(huà)現(xiàn)實(shí)世界中不等關(guān)系的一種有效數(shù)學(xué)模型,培養(yǎng)學(xué)生的建模意識(shí)。
通過(guò)對(duì)不等式概念及其解集等有關(guān)概念的探索,培養(yǎng)學(xué)生的知識(shí)遷移能力和建模意識(shí),加強(qiáng)同學(xué)之間的使用與交流。
活動(dòng)一:
感知不等關(guān)系,了解不等式的概念。
通過(guò)實(shí)例,讓學(xué)生認(rèn)識(shí)到不等關(guān)系在生活中的存在,通過(guò)問(wèn)題的解答,讓學(xué)生了解不等式的概念,體會(huì)不等式是解決實(shí)際問(wèn)題的有效工具。
活動(dòng)二:
通過(guò)類(lèi)比方程,繼續(xù)探索出不等式的解、解集及其表示方法。
通過(guò)解決上個(gè)環(huán)節(jié)的問(wèn)題,得出不等式的解,再引導(dǎo)學(xué)生觀察解的特點(diǎn),探索出解集的兩種表示方法(符號(hào)表示、數(shù)軸表示),并且培養(yǎng)學(xué)生用估算方法求解集的技能。
活動(dòng)三:
繼續(xù)探索,歸納出一元一次不等式的意義。
針對(duì)所學(xué)的不等式,讓學(xué)生歸納出特點(diǎn),得到一元一次不等式的概念,并對(duì)概念進(jìn)行辨析。
運(yùn)用本節(jié)所學(xué)的知識(shí),解決實(shí)際問(wèn)題,使學(xué)生經(jīng)歷將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,再加以解決的過(guò)程,實(shí)現(xiàn)對(duì)所學(xué)知識(shí)的鞏固和深化。
讓學(xué)生通過(guò)自我反思和互相質(zhì)疑提問(wèn),歸納總結(jié)本節(jié)課的主要內(nèi)容,交流在概念、解及解集學(xué)習(xí)中的心得和體會(huì),不斷積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),教師應(yīng)主動(dòng)參與學(xué)生小結(jié)中,作好引導(dǎo)工作,布置好作業(yè),并作及時(shí)反饋。
小強(qiáng)準(zhǔn)備隨父母乘車(chē)去武當(dāng)山春游。
⑴在車(chē)上看到兒童買(mǎi)票所需的測(cè)身高標(biāo)識(shí)線。
①x滿(mǎn)足______時(shí),他可免票。
②x滿(mǎn)足______時(shí),他該買(mǎi)全票。
⑵已知襄樊與武當(dāng)山的距離為150千米,他們上午10點(diǎn)鐘從襄樊出發(fā),汽車(chē)勻速行駛。
①若該車(chē)計(jì)劃中午12點(diǎn)準(zhǔn)時(shí)到達(dá)武當(dāng)山,車(chē)速應(yīng)滿(mǎn)足什么條件?
②若該車(chē)實(shí)際上在中午12點(diǎn)之前已到達(dá)武當(dāng)山,車(chē)速應(yīng)滿(mǎn)足什么條件?
用不等式表示:
⑴a是正數(shù);⑵a是負(fù)數(shù);⑶a與5的和小于7;⑷a與2的差大于-1;
⑸a的4倍大于8;
⑹a的一半小于3。
學(xué)生回答①這兩個(gè)由實(shí)際生活情境設(shè)置的問(wèn)題,應(yīng)非常容易.問(wèn)題②相對(duì)①難度加大了,難在題意中的條件不象上面那樣直接明了,并且可從距離和時(shí)間兩個(gè)角度來(lái)分析、解決問(wèn)題,而七年級(jí)學(xué)生恰恰缺乏閱讀分析題意、多維度思考解決問(wèn)題的能力,所以采用小組討論交流的形式解決問(wèn)題②
學(xué)生討論角度估計(jì)大都集中在距離這一角度,教師可深入小組討論中,認(rèn)真聽(tīng)聽(tīng)同學(xué)們的思路,應(yīng)鼓勵(lì)學(xué)生多發(fā)表意見(jiàn),并適當(dāng)點(diǎn)撥,直到得出兩種不等式。
此次活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:討論要有足夠的時(shí)間和空間,學(xué)生在小組討論交流時(shí),是否敢于發(fā)表自己的想法。
再給出不等式概念:
像前面式子一樣用“>”或“
教師可要求學(xué)生舉出一些表示大小的式子,學(xué)生舉出的不等式中,可能會(huì)有一些不含未知數(shù)的,如5>3等。教師此時(shí)應(yīng)總結(jié):不等式中可含有未知數(shù),也可不含未知數(shù)。
教師根據(jù)學(xué)生舉例給出表示不等關(guān)系的第三種符號(hào)“≠”,并強(qiáng)調(diào):像前面式子一樣用“≠”表示不等關(guān)系的式子也是不等式。
鞏固練習(xí)是讓學(xué)生用不等式來(lái)刻畫(huà)題中6個(gè)簡(jiǎn)單的不等關(guān)系。學(xué)生得出答案并不難,所以該環(huán)節(jié)讓學(xué)生獨(dú)立完成、互相評(píng)價(jià),教師可深入到學(xué)生的解題過(guò)程中,觀察指導(dǎo)學(xué)生的解題思路,傾聽(tīng)學(xué)生的評(píng)價(jià)。
問(wèn)題1在課本中起導(dǎo)入新課作用,考慮學(xué)生實(shí)際情況(分析應(yīng)用題能力尚欠缺)和題目難度,所以設(shè)置問(wèn)題串,降低難度。這樣編排教材我認(rèn)為更能體現(xiàn)知識(shí)呈現(xiàn)的序列性,從易到難,讓學(xué)生“列不等式”能力實(shí)現(xiàn)螺旋上升。
問(wèn)題3作用僅僅起鞏固上面所學(xué)的知識(shí),所以采用書(shū)中的一組習(xí)題,讓學(xué)生獨(dú)立完成,進(jìn)一步培養(yǎng)學(xué)生列不等式能力。
采用學(xué)生熟悉的生活情境作為導(dǎo)入內(nèi)容,然后層層推進(jìn),步步設(shè)問(wèn),環(huán)環(huán)相扣,直至推出不等式的概念及概念理解中應(yīng)注意的地方。這樣實(shí)現(xiàn)了:讓學(xué)生從已有的數(shù)學(xué)經(jīng)驗(yàn)出發(fā),從生活中建構(gòu)數(shù)學(xué)模型,為后面利用“不等式”這一模型解決生活中實(shí)際問(wèn)題作好鋪墊,體現(xiàn)了數(shù)學(xué)生活化、生活
【學(xué)習(xí)目標(biāo)】
1.知識(shí)與技能:學(xué)會(huì)推導(dǎo)并掌握基本不等式,理解這個(gè)基本不等式的幾何意義,并掌握定理中的不等號(hào)“≥”取等號(hào)的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等;
2.過(guò)程與方法:通過(guò)實(shí)例探究抽象基本不等式;
3.情態(tài)與價(jià)值:通過(guò)本節(jié)的學(xué)習(xí),體會(huì)數(shù)學(xué)來(lái)源于生活,提高學(xué)習(xí)數(shù)學(xué)的興趣
【能力培養(yǎng)】
培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、規(guī)范的學(xué)習(xí)能力,分析問(wèn)題、解決問(wèn)題的能力。
【教學(xué)重點(diǎn)】
應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式 的證明過(guò)程;及其在求最值時(shí)初步應(yīng)用
【教學(xué)難點(diǎn)】
基本不等式 等號(hào)成立條件
【教學(xué)過(guò)程】
一、課題導(dǎo)入
基本不等式 的幾何背景:如圖是在北京召開(kāi)的第24界國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),教師引導(dǎo)學(xué)生從面積的關(guān)系去找不等關(guān)系。
二、講授新課
1.問(wèn)題探究——探究圖形中的不等關(guān)系。
將圖中的“風(fēng)車(chē)”抽象成如圖,在正方形abcd中右個(gè)全等的直角三角形。設(shè)直角三角形的兩條直角邊長(zhǎng)為a,b那么正方形的邊長(zhǎng)為 。這樣,4個(gè)直角三角形的面積的和是2ab,正方形的面積為 。由于4個(gè)直角三角形的面積小于正方形的面積,我們就得到了一個(gè)不等式: 。
當(dāng)直角三角形變?yōu)榈妊苯侨切?,即a=b時(shí),正方形efgh縮為一個(gè)點(diǎn),這時(shí)有 。
2.總結(jié)結(jié)論:一般的,如果
(結(jié)論的得出盡量發(fā)揮學(xué)生自主能動(dòng)性,讓學(xué)生總結(jié),教師適時(shí)點(diǎn)撥引導(dǎo))
3.思考證明:(讓學(xué)生嘗試給出它的證明)
4.特別的,如果a>0,b>0,我們用 分別代替a、b ,可得,
通常我們把上式寫(xiě)作:
①?gòu)牟坏仁降男再|(zhì)推導(dǎo)基本不等式
用分析法證明:(略)
②理解基本不等式 的幾何意義
探究:對(duì)課本第98頁(yè)的“探究”( 幾何證明)
注:在數(shù)學(xué)中,我們稱(chēng) 為a、b的算術(shù)平均數(shù),稱(chēng) 為a、b的幾何平均數(shù)。本節(jié)定理還可敘述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
5、例:當(dāng)時(shí),取什么值,的值最?。孔钚≈凳嵌嗌??
6、課時(shí)小結(jié)
本節(jié)課,我們學(xué)習(xí)了重要不等式a2+b2≥2ab;兩正數(shù)a、b的算術(shù)平均數(shù)( ),幾何平均數(shù)( )及它們的關(guān)系( ≥ )。它們成立的條件不同,前者只要求a、b都是實(shí)數(shù),而后者要求a、b都是正數(shù)。它們既是不等式變形的基本工具,又是求函數(shù)最值的重要工具(下一節(jié)我們將進(jìn)一步學(xué)習(xí)它們的應(yīng)用)。
7、作業(yè):
課本第100頁(yè)習(xí)題[a]組的第1、2題
板書(shū) 設(shè) 計(jì)
課題: 3.4基本不等式
一、兩個(gè)不等式
二、例題及練習(xí)
尊敬的各位老師:
大家好,今天,我說(shuō)課的內(nèi)容是一元一次不等式。
對(duì)于本節(jié)課,我將從教什么、怎么教、為什么這么教來(lái)闡述本次說(shuō)課。
新課標(biāo)指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個(gè)性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過(guò)程等幾個(gè)方面展開(kāi)我的說(shuō)課。
一、說(shuō)教材
教材是連接教師和學(xué)生的紐帶,在整個(gè)教學(xué)過(guò)程中起著至關(guān)重要的作用,所以,先談?wù)勎覍?duì)教材的理解。
本節(jié)課主要講述的是一元一次不等式的概念及其解法。
在本節(jié)課之前學(xué)生已經(jīng)掌握了一元一次方程的相關(guān)知識(shí)和不等式的性質(zhì),所以,本節(jié)課類(lèi)比一元一次方程的解法,利用不等式的性質(zhì)解一元一次不等式。另外,本節(jié)課為后續(xù)學(xué)習(xí)解一元一次不等式組奠定基礎(chǔ)。
不等式在日常生產(chǎn)生活中的應(yīng)用很廣泛,它與數(shù)、式、方程、函數(shù)甚至幾何圖形有著密切的聯(lián)系,它幾乎滲透到初中數(shù)學(xué)的每一部分。所以,本節(jié)課在數(shù)學(xué)領(lǐng)域中起著非常重要的地位。
二、說(shuō)學(xué)情
合理把握學(xué)情是上好一堂課的基礎(chǔ),本次課所面對(duì)的學(xué)生群體具有以下特點(diǎn)。
本學(xué)段的學(xué)生逐漸掌握抽象概念和復(fù)雜的概念系統(tǒng),能作科學(xué)定義,抽象邏輯思維逐步占優(yōu)勢(shì)。
本階段的學(xué)生類(lèi)比推理能力都有了一定的發(fā)展,并且在生活中已經(jīng)遇到過(guò)很多關(guān)于一元一次方程的具體的事例,所以在生活上面有了很多的經(jīng)驗(yàn)基礎(chǔ)。為本節(jié)課的順利開(kāi)展做好了充分準(zhǔn)備。
三、說(shuō)教學(xué)目標(biāo)
根據(jù)以上對(duì)教材的.分析以及對(duì)學(xué)情的把握,我制定了如下三維目標(biāo):
(一)知識(shí)與技能
認(rèn)識(shí)一元一次不等式,會(huì)解簡(jiǎn)單的一元一次不等式,類(lèi)比一元一次方程的步驟,總結(jié)歸納解一元一次不等式的基本步驟。
(二)過(guò)程與方法
通過(guò)對(duì)比解一元一次方程的步驟,學(xué)生自己總結(jié)歸納一元一次不等式步驟的過(guò)程,提高歸納能力,并學(xué)會(huì)類(lèi)比的學(xué)習(xí)方法。
(三)情感態(tài)度價(jià)值觀
通過(guò)數(shù)學(xué)建模,提高對(duì)數(shù)學(xué)的學(xué)習(xí)興趣。
四、說(shuō)教學(xué)重難點(diǎn)
本著新課程標(biāo)準(zhǔn),吃透教材,了解學(xué)生特點(diǎn)的基礎(chǔ)上我確定了以下重難點(diǎn):
(一)教學(xué)重點(diǎn)
掌握一元一次不等式的概念,會(huì)解一元一次不等式并能夠在數(shù)軸上表示出來(lái)。
(二)教學(xué)難點(diǎn)
教學(xué)目標(biāo)
1、能夠根據(jù)實(shí)際問(wèn)題中的數(shù)量關(guān)系,列一元一次不等式(組)解決實(shí)際問(wèn)題.
2、通過(guò)例題教學(xué),學(xué)生能夠?qū)W會(huì)從數(shù)學(xué)的角度認(rèn)識(shí)問(wèn)題,理解問(wèn)題,提出問(wèn)題,?? 學(xué)會(huì)從實(shí)際問(wèn)題中抽象出數(shù)學(xué)模型.
3、能夠認(rèn)識(shí)數(shù)學(xué)與人類(lèi)生活的密切聯(lián)系,培養(yǎng)學(xué)生應(yīng)用所學(xué)數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的意識(shí).
教學(xué)重點(diǎn)?? 能夠根據(jù)實(shí)際問(wèn)題中的數(shù)量關(guān)系,列出一元一次不等式(組)解決 實(shí)際問(wèn)題
教學(xué)難點(diǎn)?? 審題,根據(jù)實(shí)際問(wèn)題列出不等式.
例題?? 甲、乙兩商場(chǎng)以同樣的價(jià)格出售同樣的商品,并且又各自推出不同的優(yōu)惠:在甲商場(chǎng)累計(jì)購(gòu)物超過(guò)100元后,超出100元的部分按90%收費(fèi);在乙商場(chǎng)累計(jì)購(gòu)物超過(guò)50元后,超出50元的部分按95%收費(fèi)。顧客到哪家商場(chǎng)購(gòu)物花費(fèi)少??
解:設(shè)累計(jì)購(gòu)物x元,根據(jù)題意得
(1)當(dāng)0 < x≤50時(shí),到甲、乙兩商場(chǎng)購(gòu)物花費(fèi)一樣;
(2)當(dāng)50< x≤100時(shí),到乙商場(chǎng)購(gòu)物花費(fèi)少;
(3)當(dāng)x > 100時(shí),到甲商場(chǎng)的花費(fèi)為100+0.9(x-100) , 到乙商場(chǎng)的花費(fèi)為50+0.95(x-50)則
50+0.95(x-50) > 100+0.9(x-100),解之得x >150
50+0.95(x-50) < 100+0.9(x-100),解之得x < 150
50+0.95(x-50) = 100+0.9(x-100),?? 解之得x = 150
答:當(dāng)0 < x≤50時(shí),到甲、乙兩商場(chǎng)購(gòu)物花費(fèi)一樣;
當(dāng)50< x≤100時(shí),到乙商場(chǎng)購(gòu)物花費(fèi)少;當(dāng)x>150時(shí),到甲商場(chǎng)購(gòu)物花費(fèi)少;當(dāng)100 < x <150時(shí),到乙商場(chǎng)購(gòu)物花費(fèi)少;當(dāng)x=150時(shí),到甲、乙兩商場(chǎng)購(gòu)物花費(fèi)一樣。
變式練習(xí)? 學(xué)校為解決部分學(xué)生的午餐問(wèn)題,聯(lián)系了兩家快餐公司,兩家公司的報(bào)價(jià)、質(zhì)量和服務(wù)承諾都相同,且都表示對(duì)學(xué)生優(yōu)惠:甲公司表示每份按報(bào)價(jià)的90%收費(fèi),乙公司表示購(gòu)買(mǎi)100份以上的部分按報(bào)價(jià)的80%收費(fèi)。問(wèn):選擇哪家公司較好?
解:設(shè)購(gòu)買(mǎi)午餐x份,每份報(bào)價(jià)為“1”,根據(jù)題意得
0.9x > 100+0.8(x-100),解之得x >
0.9x < 100+0.8(x-100),解之得x <
0.9x = 100+0.8(x-100),解之得x =
答:當(dāng)x>時(shí),選乙公司較好;當(dāng)0 < x <時(shí),選甲公司較好;當(dāng)x=時(shí),兩公司實(shí)際收費(fèi)相同。
作業(yè)
1、某商店5月1號(hào)舉行促銷(xiāo)優(yōu)惠活動(dòng),當(dāng)天到該商店購(gòu)買(mǎi)商品有兩種,一:用168元購(gòu)買(mǎi)會(huì)員卡成為會(huì)員后,憑會(huì)員卡購(gòu)買(mǎi)商店內(nèi)任何商品,一律按商品價(jià)格的8折優(yōu)惠;二:若不購(gòu)買(mǎi)會(huì)員卡,則購(gòu)買(mǎi)商店內(nèi)任何商品,一律按商品價(jià)格的9.5折優(yōu)惠。已知小敏5月1日前不是該商店的會(huì)員。請(qǐng)幫小敏算一算,采用哪種更合算?
2、某單位計(jì)劃10月份組織員工到杭州旅游,人數(shù)估計(jì)在10~25之間。甲乙兩旅行社的服務(wù)質(zhì)量相同,且組織到杭州旅游的價(jià)格都是每人元。該單位聯(lián)系時(shí),甲旅行社表示可以給予每位旅客七五折優(yōu)惠;乙旅行社表示可先免去一帶隊(duì)的旅游費(fèi)用,其余游客八折優(yōu)惠。問(wèn)該單位怎樣選擇,可使其支付的旅游總費(fèi)用較少?
一、教學(xué)目標(biāo):
(一)知識(shí)與技能
1.掌握不等式的三條基本性質(zhì)。
2.運(yùn)用不等式的基本性質(zhì)對(duì)不等式進(jìn)行變形。
(二)過(guò)程與方法
1.通過(guò)等式的性質(zhì),探索不等式的性質(zhì),初步體會(huì)“類(lèi)比”的數(shù)學(xué)思想。
2.通過(guò)觀察、猜想、驗(yàn)證、歸納等數(shù)學(xué)活動(dòng),經(jīng)歷從特殊到一般、由具體到抽象的認(rèn)知過(guò)程,感受數(shù)學(xué)思考過(guò)程的條理性,發(fā)展思維能力和語(yǔ)言表達(dá)能力。
(三)情感態(tài)度與價(jià)值觀
通過(guò)探究不等式基本性質(zhì)的活動(dòng),培養(yǎng)學(xué)生合作交流的意識(shí)和大膽猜想,樂(lè)于探究的良好思維品質(zhì)。
二、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn): 探索不等式的三條基本性質(zhì)并能正確運(yùn)用它們將不等式變形。
教學(xué)難點(diǎn): 不等式基本性質(zhì)3的探索與運(yùn)用。
三、教學(xué)方法:自主探究——合作交流
四、教學(xué)過(guò)程:
情景引入:1.舉例說(shuō)明什么是不等式?
2.判斷下列各式是否成立?并說(shuō)明理由。
( 1 ) 若x-6=10, 則x=16( )
( 2 ) 若3x=15, 則 x=5 ( )
( 3 ) 若x-6>10 則 x>16( )
( 4 ) 若3x>15 則 x>5 ( )
【設(shè)計(jì)意圖】(1)、(2)小題喚起對(duì)舊知識(shí)等式的基本性質(zhì)的回憶,(3)、(4)小題引導(dǎo)學(xué)生大膽說(shuō)出自己的想法。
溫故知新
問(wèn)題1.由等式性質(zhì)1你能猜想一下不等式具有什么樣的性質(zhì)嗎?
等式性質(zhì)1:等式兩邊都加上或減去同一個(gè)數(shù)(或同一個(gè)整式),所得結(jié)果仍是不等式。
估計(jì)學(xué)生會(huì)猜:不等式兩邊都加上或減去同一個(gè)數(shù)(或同一個(gè)整式),所得結(jié)果仍是不等式。教師引導(dǎo):“=”沒(méi)有方向性,所以可以說(shuō)所得結(jié)果仍是等式,而不等號(hào):“>,<,≥,≤”具有方向性,我們應(yīng)該重點(diǎn)研究它在方向上的變化。
問(wèn)題2.你能通過(guò)實(shí)驗(yàn)、猜想,得出進(jìn)一步的結(jié)論嗎?
同學(xué)通過(guò)實(shí)例驗(yàn)證得出結(jié)論,師生共同總結(jié)不等式性質(zhì)1。
問(wèn)題3.你能由等式性質(zhì)2進(jìn)一步猜想不等式還具有什么性質(zhì)嗎?
等式性質(zhì)2:等式兩邊都乘或除以同一個(gè)數(shù)(除數(shù)不能是0),等式依然成立。
估計(jì)學(xué)生會(huì)猜:不等式兩邊都乘或除以同一個(gè)數(shù)(除數(shù)不能是0),不等號(hào)的方向不變。
你能和小伙伴一起來(lái)驗(yàn)證你們的猜想嗎?
學(xué)生在小組內(nèi)合作交流,發(fā)現(xiàn)了在不等式兩邊都乘或除以同一個(gè)數(shù)時(shí),不等號(hào)的方向會(huì)出現(xiàn)兩種情況。教師進(jìn)一步引導(dǎo)學(xué)生通過(guò)分析、比較探索規(guī)律,從而形成共識(shí),歸納概括出不等式性質(zhì)2和3。
問(wèn)題4.在不等式兩邊都乘0會(huì)出現(xiàn)什么情況?
問(wèn)題5.如果a、b、c表示任意數(shù),且a<b,你能用a、b、c把不等式的基本性質(zhì)表示出來(lái)碼?
【想一想】不等式的基本性質(zhì)與等式的基本性質(zhì)有什么相同之處,有什么不同之處?
學(xué)生思考,獨(dú)立總結(jié)異同點(diǎn)。
【設(shè)計(jì)意圖】引導(dǎo)學(xué)生把二者進(jìn)行比較,有助于加深對(duì)不等式基本性質(zhì)的理解,促成知識(shí)的“正遷移”。
綜合訓(xùn)練:你能運(yùn)用不等式的基本性質(zhì)解決問(wèn)題嗎?
1、課本62頁(yè)例3
教師引導(dǎo)學(xué)生觀察每個(gè)問(wèn)題是由a>b經(jīng)過(guò)怎樣的變形得到的,應(yīng)該應(yīng)用不等式的哪條基本性質(zhì)。由學(xué)生思考后口答。
2、你認(rèn)為在運(yùn)用不等式的基本性質(zhì)時(shí)哪一條性質(zhì)最容易出錯(cuò),應(yīng)該怎樣記?。?/p>
3.火眼金睛
①a>1, 則2a___a
②a>3a,則 a ___ 0
【設(shè)計(jì)意圖】通過(guò)變式訓(xùn)練,加深學(xué)生對(duì)新知的理解,培養(yǎng)學(xué)生分析、探究問(wèn)題的能力。
課堂小結(jié):
這節(jié)課你有哪些收獲?你認(rèn)為自己的表現(xiàn)如何?教師引導(dǎo)學(xué)生回顧、思考、交流。
【設(shè)計(jì)意圖】回顧、總結(jié)、提高。學(xué)生自覺(jué)形成本節(jié)的課的知識(shí)網(wǎng)絡(luò)。
思考題
咱們班的盛芳同學(xué)準(zhǔn)備在五、一期間和他的爸爸、媽媽外出旅游。青年旅行社的標(biāo)準(zhǔn)為:大人全價(jià),小孩半價(jià);方正旅行社的標(biāo)準(zhǔn)為:大人、小孩一律八折。若兩家旅行社的基本價(jià)一樣,你能幫盛芳同學(xué)考慮一下選擇哪家旅行社更合算嗎?
【設(shè)計(jì)意圖】利用所學(xué)的數(shù)學(xué)知識(shí),解決生活中的問(wèn)題,加強(qiáng)數(shù)學(xué)與生活的聯(lián)系,體驗(yàn)數(shù)學(xué)是描述現(xiàn)實(shí)世界的重要手段。
一元一次不等式(第二課時(shí))
教學(xué)設(shè)計(jì)
一、學(xué)習(xí)目標(biāo)
會(huì)用一元一次不等式解決實(shí)際問(wèn)題。
體會(huì)抽象思想,從實(shí)際問(wèn)題到數(shù)學(xué)問(wèn)題,找出數(shù)量關(guān)系,建立一元一次不等式的數(shù)學(xué)模型。
積累利用一元一次不等式解決實(shí)際問(wèn)題的經(jīng)驗(yàn),鞏固一元一次不等式的有關(guān)知識(shí)。
重點(diǎn):由實(shí)際問(wèn)題中的不等關(guān)系列出不等式。難點(diǎn):列一元一次不等式描述實(shí)際問(wèn)題中的不等關(guān)系。
二、學(xué)習(xí)過(guò)程 ①情境導(dǎo)入
老師想要舉辦以“速算”為主題的計(jì)算比賽,但是老師在籌劃的過(guò)程中遇到了幾個(gè)問(wèn)題,請(qǐng)同學(xué)們利用不等式幫助老師解決遇到的幾個(gè)問(wèn)題。
老師遇到的第一個(gè)問(wèn)題:行走上的時(shí)間問(wèn)題 老師遇到的第二個(gè)問(wèn)題:商場(chǎng)購(gòu)買(mǎi)商品問(wèn)題 老師遇到的第三個(gè)問(wèn)題:比賽分?jǐn)?shù)計(jì)算問(wèn)題
②想一想(由學(xué)生在練習(xí)紙上進(jìn)行默寫(xiě),組間串換檢查)我們學(xué)過(guò)的那些知識(shí)可以用到解決這些實(shí)際問(wèn)題上呢?
1、不等式:用“”表示大小關(guān)系的式子,叫做不等式。
用
“≠”
表示不等關(guān)系的式子,叫做不等式。
用“≥”“≤”表示大小關(guān)系的式子,叫做不等式。
2、不等式的性質(zhì):>b
a±c>b±c
>b(c>0)ac>bc(a/c>b/c)
>b(c
在前兩節(jié)課的研究當(dāng)中,學(xué)生已掌握了一些簡(jiǎn)單的不等式及其應(yīng)用,并能用不等式及不等式組抽象出實(shí)際問(wèn)題中的不等量關(guān)系,掌握了不等式的一些簡(jiǎn)單性質(zhì)與證明,研究了一元二次不等式及其解法,學(xué)習(xí)了二元一次不等式(組)與簡(jiǎn)單的線性規(guī)劃問(wèn)題。本節(jié)課的研究是前三大節(jié)學(xué)習(xí)的延續(xù)和拓展。另外,為基本不等式的應(yīng)用墊定了堅(jiān)實(shí)的基礎(chǔ),所以說(shuō),本節(jié)課是起到了承上啟下的作用。本節(jié)課是通過(guò)讓學(xué)生觀察第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo)圖案中隱含的相等關(guān)系與不等關(guān)系而引入的通過(guò)分析得出基本不等式,然后從三種角度對(duì)基本不等式展開(kāi)證明及對(duì)基本不等式展開(kāi)一些簡(jiǎn)單的應(yīng)用,進(jìn)而更深一層次地從理性角度建立不等觀念。教師應(yīng)作好點(diǎn)撥,利用幾何背景,數(shù)形結(jié)合做好歸納總結(jié)、邏輯分析,并鼓勵(lì)學(xué)生從理性角度去分析探索過(guò)程,進(jìn)而更深層次理解基本不等式,鼓勵(lì)學(xué)生對(duì)數(shù)學(xué)知識(shí)和方法獲得過(guò)程的探索,同時(shí)也能激發(fā)學(xué)生的學(xué)習(xí)興趣,根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用觀察、類(lèi)比、歸納、邏輯分析、思考、合作交流、探究,得出基本不等式,進(jìn)行啟發(fā)、探究式教學(xué)并使用投影儀輔助。
教學(xué)重點(diǎn)
1、創(chuàng)設(shè)代數(shù)與幾何背景,用數(shù)形結(jié)合的思想理解基本不等式;
2、從不同角度探索基本不等式的證明過(guò)程;
3、從基本不等式的證明過(guò)程進(jìn)一步體會(huì)不等式證明的常用思路。
教學(xué)難點(diǎn)
1、對(duì)基本不等式從不同角度的探索證明;
2、通過(guò)基本不等式的證明過(guò)程體會(huì)分析法的證明思路。
教具準(zhǔn)備 多媒體及課件
三維目標(biāo)
一、知識(shí)與技能
1、創(chuàng)設(shè)用代數(shù)與幾何兩方面背景,用數(shù)形結(jié)合的思想理解基本不等式;
2、嘗試讓學(xué)生從不同角度探索基本不等式的證明過(guò)程;
3、從基本不等式的證明過(guò)程進(jìn)一步體會(huì)不等式證明的常用思路,即由條件到結(jié)論,或由結(jié)論到條件。
二、過(guò)程與方法
1、采用探究法,按照聯(lián)想、思考、合作交流、邏輯分析、抽象應(yīng)用的方法進(jìn)行啟發(fā)式教學(xué);
2、教師提供問(wèn)題、素材,并及時(shí)點(diǎn)撥,發(fā)揮老師的主導(dǎo)作用和學(xué)生的主體作用;
3、將探索過(guò)程設(shè)計(jì)為較典型的具有挑戰(zhàn)性的問(wèn)題,激發(fā)學(xué)生去積極思考,從而培養(yǎng)他們的數(shù)學(xué)學(xué)習(xí)興趣。
三、情感態(tài)度與價(jià)值觀
1、通過(guò)具體問(wèn)題的解決,讓學(xué)生去感受、體驗(yàn)現(xiàn)實(shí)世界和日常生活中存在著大量的不等量關(guān)系并需要從理性的角度去思考,鼓勵(lì)學(xué)生用數(shù)學(xué)觀點(diǎn)進(jìn)行歸納、抽象,使學(xué)生感受數(shù)學(xué)、走進(jìn)數(shù)學(xué),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣和良好的思維習(xí)慣;
2、學(xué)習(xí)過(guò)程中,通過(guò)對(duì)問(wèn)題的探究思考,廣泛參與,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣,主動(dòng)、積極的學(xué)習(xí)品質(zhì),從而提高學(xué)習(xí)質(zhì)量;
3、通過(guò)對(duì)富有挑戰(zhàn)性問(wèn)題的解決,激發(fā)學(xué)生頑強(qiáng)的探究精神和嚴(yán)肅認(rèn)真的科學(xué)態(tài)度,同時(shí)去感受數(shù)學(xué)的應(yīng)用性,體會(huì)數(shù)學(xué)的奧秘、數(shù)學(xué)的簡(jiǎn)潔美、數(shù)學(xué)推理的嚴(yán)謹(jǐn)美,從而激發(fā)學(xué)生的學(xué)習(xí)興趣。
教學(xué)過(guò)程
導(dǎo)入新課
探究:上圖是在北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車(chē),代表中國(guó)人民熱情好客,你能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?
(教師用投影儀給出第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),并介紹此會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車(chē),代表中國(guó)人民熱情好客。通過(guò)直觀情景導(dǎo)入有利于吸引學(xué)生的注意力,激發(fā)學(xué)生的學(xué)習(xí)熱情,并增強(qiáng)學(xué)生的愛(ài)國(guó)主義熱情)
推進(jìn)新課
師 同學(xué)們能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?如何找?
(沉靜片刻)
生 應(yīng)該先從此圖案中抽象出幾何圖形。
師 此圖案中隱含什么樣的幾何圖形呢?哪位同學(xué)能在黑板上畫(huà)出這個(gè)幾何圖形?
(請(qǐng)兩位同學(xué)在黑板上畫(huà)。教師根據(jù)兩位同學(xué)的板演作點(diǎn)評(píng))
(其中四個(gè)直角三角形沒(méi)有畫(huà)全等,不形象、直觀。此時(shí)教師用投影片給出隱含的規(guī)范的幾何圖形)
師 同學(xué)們觀察得很細(xì)致,抽象出的幾何圖形比較準(zhǔn)確。這說(shuō)明,我們只要在現(xiàn)有的基礎(chǔ)上進(jìn)一步刻苦努力,發(fā)奮圖強(qiáng),也能作出和數(shù)學(xué)家趙爽一樣的成績(jī)。
(此時(shí),每一位同學(xué)看上去都精神飽滿(mǎn),信心百倍,全神貫注地投入到本節(jié)課的學(xué)習(xí)中來(lái))
[過(guò)程引導(dǎo)]
師 設(shè)直角三角形的兩直角邊的長(zhǎng)分別為a、b,那么,四個(gè)直角三角形的面積之和與正方形的面積有什么關(guān)系呢?
生 顯然正方形的面積大于四個(gè)直角三角形的面積之和。
師 一定嗎?
(大家齊聲:不一定,有可能相等)
師 同學(xué)們能否用數(shù)學(xué)符號(hào)去進(jìn)行嚴(yán)格的推理證明,從而說(shuō)明我們剛才直覺(jué)思維的合理性?
生 每個(gè)直角三角形的面積為,四個(gè)直角三角形的面積之和為2ab。正方形的邊長(zhǎng)為,所以正方形的面積為a2+b2,則a2+b2≥2ab。
師 這位同學(xué)回答得很好,表達(dá)很全面、準(zhǔn)確,但請(qǐng)大家思考一下,他對(duì)a2+b2≥2ab證明了嗎?
生 沒(méi)有,他仍是由我們剛才的直觀所得,只是用字母表達(dá)一下而已。
師 回答得很好。
(有的同學(xué)感到迷惑不解)
師 這樣的敘述不能代替證明。這是同學(xué)們?cè)诮忸}時(shí)經(jīng)常會(huì)犯的錯(cuò)誤。實(shí)質(zhì)上,對(duì)文字性語(yǔ)言敘述證明題來(lái)說(shuō),他只是寫(xiě)出了已知、求證,并未給出證明。
(有的同學(xué)竊竊私語(yǔ),確實(shí)是這樣,并沒(méi)有給出證明)
師 請(qǐng)同學(xué)們繼續(xù)思考,該如何證明此不等式,即a2+b2≥2ab。
生 采用作差的方法,由a2+b2-2ab=(a-b)2,∵(a-b)2是一個(gè)完全平方數(shù),它是非負(fù)數(shù),即(a-b)2≥0,所以可得a2+b2≥2ab。
師 同學(xué)們思考一下,這位同學(xué)的證明是否正確?
生 正確。
[教師精講]
師 這位同學(xué)的證明思路很好。今后,我們把這種證明不等式的思想方法形象地稱(chēng)之為“比較法”,它和根據(jù)實(shí)數(shù)的基本性質(zhì)比較兩個(gè)代數(shù)式的大小是否一樣。
生 實(shí)質(zhì)一樣,只是設(shè)問(wèn)的形式不同而已。一個(gè)是比較大小,一個(gè)是讓我們?nèi)プC明。
師 這位同學(xué)回答得很好,思維很深刻。此處的比較法是用差和0作比較。在我們的數(shù)學(xué)研究當(dāng)中,還有另一種“比較法”。
(教師此處的設(shè)問(wèn)是針對(duì)學(xué)生已有的知識(shí)結(jié)構(gòu)而言)
生 作商,用商和“1”比較大小。
師 對(duì)。那么我們?cè)谟龅竭@類(lèi)問(wèn)題時(shí),何時(shí)采用作差,何時(shí)采用作商呢?這個(gè)問(wèn)題讓同學(xué)們課后去思考,在解決問(wèn)題中自然會(huì)遇到。
(此處設(shè)置疑問(wèn),意在激發(fā)學(xué)生課后去自主探究問(wèn)題,把探究的思維空間切實(shí)留給學(xué)生)
[合作探究]
師 請(qǐng)同學(xué)們?cè)僮屑?xì)觀察一下,等號(hào)何時(shí)取到。
生 當(dāng)四個(gè)直角三角形的直角頂點(diǎn)重合時(shí),即面積相等時(shí)取等號(hào)。
(學(xué)生的思維仍建立在感性思維基礎(chǔ)之上,教師應(yīng)及時(shí)點(diǎn)撥)
師 從不等式a2+b2≥2ab的證明過(guò)程能否去說(shuō)明。
生 當(dāng)且僅當(dāng)(a-b)2=0,即a=b時(shí),取等號(hào)。
師 這位同學(xué)回答得很好。請(qǐng)同學(xué)們看一下,剛才兩位同學(xué)分別從幾何圖形與不等式兩個(gè)角度分析等號(hào)成立的條件是否一致。
(大家齊聲)一致。
(此處意在強(qiáng)化學(xué)生的直覺(jué)思維與理性思維要合并使用。就此問(wèn)題來(lái)講,意在強(qiáng)化學(xué)生數(shù)形結(jié)合思想方法的應(yīng)用)
板書(shū):
一般地,對(duì)于任意實(shí)數(shù)a、b,我們有a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。
[過(guò)程引導(dǎo)]
師 這是一個(gè)很重要的不等式。對(duì)數(shù)學(xué)中重要的結(jié)論,我們應(yīng)仔細(xì)觀察、思考,才能挖掘出它的內(nèi)涵與外延。只有這樣,我們用它來(lái)解決問(wèn)題時(shí)才能得心應(yīng)手,也不會(huì)出錯(cuò)。
(同學(xué)們的思維再一次高度集中,似乎能從不等式a2+b2≥2ab中得出什么。此時(shí),教師應(yīng)及時(shí)點(diǎn)撥、指引)
師 當(dāng)a>0,b>0時(shí),請(qǐng)同學(xué)們思考一下,是否可以用a、b代替此不等式中的a、b。
生 完全可以。
師 為什么?
生 因?yàn)椴坏仁街械腶、b∈R。
師 很好,我們來(lái)看一下代替后的結(jié)果。
板書(shū):
即 (a>0,b>0)。
師 這個(gè)不等式就是我們這節(jié)課要推導(dǎo)的基本不等式。它很重要,在數(shù)學(xué)的研究中有很多應(yīng)用,我們常把叫做正數(shù)a、b的算術(shù)平均數(shù),把a(bǔ)b叫做正數(shù)a、b的幾何平均數(shù),即兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
(此處意在引起學(xué)生的重視,從不同的角度去理解)
師 請(qǐng)同學(xué)們嘗試一下,能否利用不等式及實(shí)數(shù)的基本性質(zhì)來(lái)推導(dǎo)出這個(gè)不等式呢?
(此時(shí),同學(xué)們信心十足,都說(shuō)能。教師利用投影片展示推導(dǎo)過(guò)程的填空形式)
要證:,①
只要證a+b≥2,②
要證②,只要證:a+b-2≥0,③
要證③,只要證:④
顯然④是成立的,當(dāng)且僅當(dāng)a=b時(shí),④中的等號(hào)成立,這樣就又一次得到了基本不等式。
(此處以填空的形式,突出體現(xiàn)了分析法證明的關(guān)鍵步驟,意在把思維的時(shí)空切實(shí)留給學(xué)生,讓學(xué)生在探究的基礎(chǔ)上去體會(huì)分析法的證明思路,加大了證明基本不等式的探究力度)
[合作探究]
老師用投影儀給出下列問(wèn)題。
如圖,AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),AC=a,BC=b。過(guò)點(diǎn)C作垂直于AB的弦DD′,連結(jié)AD、BD。你能利用這個(gè)圖形得出基本不等式的幾何解釋嗎?
(本節(jié)課開(kāi)展到這里,學(xué)生從基本不等式的證明過(guò)程中已體會(huì)到證明不等式的常用方法,對(duì)基本不等式也已經(jīng)很熟悉,這就具備了探究這個(gè)問(wèn)題的知識(shí)與情感基礎(chǔ))
[合作探究]
師 同學(xué)們能找出圖中與a、b有關(guān)的線段嗎?
生 可證△ACD ∽△BCD,所以可得。
生 由射影定理也可得。
師 這兩位同學(xué)回答得都很好,那ab與分別又有什么幾何意義呢?
生表示半弦長(zhǎng),表示半徑長(zhǎng)。
師 半徑和半弦又有什么關(guān)系呢?
生 由半徑大于半弦可得。
師 這位同學(xué)回答得是否很?chē)?yán)密?
生 當(dāng)且僅當(dāng)點(diǎn)C與圓心重合,即當(dāng)a=b時(shí)可取等號(hào),所以也可得出基本不等式 (a>0,b>0)。
課堂小結(jié)
師 本節(jié)課我們研究了哪些問(wèn)題?有什么收獲?
生 我們通過(guò)觀察分析第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo)得出了不等式a2+b2≥2ab。
生 由a2+b2≥2ab,當(dāng)a>0,b>0時(shí),以、分別代替a、b,得到了基本不等式 (a>0,b>0)。進(jìn)而用不等式的性質(zhì),由結(jié)論到條件,證明了基本不等式。
生 在圓這個(gè)幾何圖形中我們也能得到基本不等式。
(此處,創(chuàng)造讓學(xué)生進(jìn)行課堂小結(jié)的機(jī)會(huì),目的是培養(yǎng)學(xué)生語(yǔ)言表達(dá)能力,也有利于課外學(xué)生歸納、總結(jié)等學(xué)習(xí)方法、能力的提高)
師 大家剛才總結(jié)得都很好,本節(jié)課我們從實(shí)際情景中抽象出基本不等式。并采用數(shù)形結(jié)合的思想,賦予基本不等式幾何直觀,讓大家進(jìn)一步領(lǐng)悟到基本不等式成立的條件是a>0,b>0,及當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立。在對(duì)不等式的證明過(guò)程中,體會(huì)到一些證明不等式常用的思路、方法。以后,同學(xué)們要注意數(shù)形結(jié)合的思想在解題中的靈活運(yùn)用。
布置作業(yè)
活動(dòng)與探究:已知a、b都是正數(shù),試探索, ,,的大小關(guān)系,并證明你的結(jié)論。
分析:(方法一)由特殊到一般,用特殊值代入,先得到表達(dá)式的大小關(guān)系,再由不等式及實(shí)數(shù)的性質(zhì)證明。
(方法二)創(chuàng)設(shè)幾何直觀情景。設(shè)AC=a,BC=b,用a、b表示線段CE、OE、CD、DF的長(zhǎng)度,由CE>OE>CD>DF可得。
板書(shū)設(shè)計(jì)
基本不等式的證明
一、實(shí)際情景引入得到重要不等式
a2+b2≥2ab
二、定理
若a>0,b>0
課后作業(yè):
證明過(guò)程探索:
各位評(píng)委老師,上午好,我選擇的課題是必修5第三章第四節(jié)《基本不等式》第一課時(shí)。關(guān)于本課的設(shè)計(jì),我將從以下五個(gè)方面向各位評(píng)委老師匯報(bào)。
一、教材分析
◆本節(jié)教材的地位和作用
◆教學(xué)目標(biāo)
◆教學(xué)重點(diǎn)、難點(diǎn)
1、本節(jié)教材的地位和作用
"基本不等式" 是必修5的重點(diǎn)內(nèi)容,在課本封面上就體現(xiàn)出來(lái)了(展示課本和參考書(shū)封面)。它是在學(xué)完"不等式的性質(zhì)"、"不等式的解法"及"線性規(guī)劃"的基礎(chǔ)上對(duì)不等式的進(jìn)一步研究。在不等式的證明和求最值過(guò)程中有著廣泛的應(yīng)用。求最值又是高考的熱點(diǎn)。同時(shí)本節(jié)知識(shí)又滲透了數(shù)形結(jié)合、化歸等重要數(shù)學(xué)思想,有利于培養(yǎng)學(xué)生良好的思維品質(zhì)。
2、 教學(xué)目標(biāo)
(1)知識(shí)目標(biāo):探索基本不等式的證明過(guò)程;會(huì)用基本不等式解決最值問(wèn)題。
(2)能力目標(biāo):培養(yǎng)學(xué)生觀察、試驗(yàn)、歸納、判斷、猜想等思維能力。
(3)情感目標(biāo):培養(yǎng)學(xué)生嚴(yán)謹(jǐn)求實(shí)的科學(xué)態(tài)度,體會(huì)數(shù)與形的和諧統(tǒng)一,領(lǐng)略數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生的學(xué)習(xí)興趣和勇于探索的精神。
3、教學(xué)重點(diǎn)、難點(diǎn)
根據(jù)課程標(biāo)準(zhǔn)制定如下的教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn): 應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索基本不等式。
難點(diǎn):基本不等式的內(nèi)涵及幾何意義的挖掘,用基本不等式求最值。
二、教法說(shuō)明
本節(jié)課借助幾何畫(huà)板,使用多媒體輔助進(jìn)行直觀演示。采用啟發(fā)式教學(xué)法創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生開(kāi)始嘗試活動(dòng)。運(yùn)用生活中的實(shí)際例子,讓學(xué)生享受解決實(shí)際問(wèn)題的樂(lè)趣。 課堂上主要采取對(duì)比分析;讓學(xué)生邊議、邊評(píng);組織學(xué)生學(xué)、思、練。通過(guò)師生和諧對(duì)話,使情感共鳴,讓學(xué)生的潛能、創(chuàng)造性最大限度發(fā)揮,使認(rèn)知效益最大。讓學(xué)生愛(ài)學(xué)、樂(lè)學(xué)、會(huì)學(xué)、學(xué)會(huì)。
三、學(xué)法指導(dǎo)
為更好的貫徹課改精神,合理的對(duì)學(xué)生進(jìn)行素質(zhì)教育,在教學(xué)中,始終以學(xué)生主體,教師為主導(dǎo)。因此我在教學(xué)中讓學(xué)生從不同角度去觀察、分析,指導(dǎo)學(xué)生解決問(wèn)題,感受知識(shí)的形成過(guò)程,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識(shí)和能力,讓學(xué)生學(xué)會(huì)學(xué)習(xí)。
四、教學(xué)設(shè)計(jì)
◆運(yùn)用2002年國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)引入
◆運(yùn)用分析法證明基本不等式
◆不等式的幾何解釋
◆基本不等式的應(yīng)用
1、運(yùn)用2002年國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)引入
如圖,這是在北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)。會(huì)標(biāo)根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去象一個(gè)風(fēng)車(chē),代表中國(guó)人民熱情好客。(展示風(fēng)車(chē))
正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,設(shè)AE=a,BE=b,則正方形的面積為S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它們的面積之和是S’=_
從圖形中易得,s≥s’,即
問(wèn)題1:它們有相等的情況嗎?何時(shí)相等?
問(wèn)題2:當(dāng) a,b為任意實(shí)數(shù)時(shí),上式還成立嗎?(學(xué)生積極思考,通過(guò)幾何畫(huà)板幫助學(xué)生理解)
一般地,對(duì)于任意實(shí)數(shù)a、b,我們有
當(dāng)且僅當(dāng)(重點(diǎn)強(qiáng)調(diào))a=b時(shí),等號(hào)成立(合情推理)
問(wèn)題3:你能給出它的證明嗎?(讓學(xué)生獨(dú)立證明)
設(shè)計(jì)意圖
(1)運(yùn)用2002年國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)引入,能讓學(xué)生進(jìn)一步體會(huì)中國(guó)數(shù)學(xué)的歷史悠久,感受數(shù)學(xué)與生活的聯(lián)系。
(2)運(yùn)用此圖標(biāo)能較容易的觀察出面積之間的關(guān)系,引入基本不等式很直觀。
(3)三個(gè)思考題為學(xué)生創(chuàng)造情景,逐層深入,強(qiáng)化理解。
2、運(yùn)用分析法證明基本不等式
如果 a>0,b>0 ,
用 和 分別代替a,b.可以得到
也可寫(xiě)成
(強(qiáng)調(diào)基本不等式成立的前提條件"正")(演繹推理)
問(wèn)題4:你能用不等式的性質(zhì)直接推導(dǎo)嗎?
要證 ①
只要證 ②
要證② ,只要證 ③
要證③ ,只要證 ④
顯然, ④是成立的。當(dāng)且僅當(dāng)a=b時(shí), 不等式中的等號(hào)成立。
(強(qiáng)調(diào)基本不等式取等的條件"等")
設(shè)計(jì)意圖
(1)證明過(guò)程課本上是以填空形式出現(xiàn)的,學(xué)生能夠獨(dú)立完成,這也能進(jìn)一步培養(yǎng)學(xué)生的自學(xué)能力,符合課改精神;
(2)證明過(guò)程印證了不等式的正確性,并能加深學(xué)生對(duì)基本不等式的理解;
(3)此種證明方法是"分析法",在選修教材的《推理與證明》一章中會(huì)重點(diǎn)講解,此處有必要讓學(xué)生初步了解。
3、不等式的幾何解釋
如圖,AB是圓的直徑,C是AB上任一點(diǎn),AC=a,CB=b,過(guò)點(diǎn)C作垂直于AB的弦DE,連AD,BD,則CD= ,半徑為
問(wèn)題5: 你能用這個(gè)圖得出基本不等式的幾何解釋嗎? (學(xué)生積極思考,通過(guò)幾何畫(huà)板幫助學(xué)生理解)
設(shè)計(jì)意圖
幾何直觀能啟迪思路,幫助理解,因此,借助幾何直觀學(xué)習(xí)和理解數(shù)學(xué),是數(shù)學(xué)學(xué)習(xí)中的重要方面。只有做到了直觀上的理解,才是真正的理解。
4、基本不等式的應(yīng)用
例1.證明
(學(xué)生自己證明)
設(shè)計(jì)意圖
(1)這道例題很簡(jiǎn)單,多數(shù)學(xué)生都會(huì)仿照課本上的分析思路重新證明,能夠練習(xí)"分析法"證明不等式的過(guò)程;
(2)學(xué)生能夠加深對(duì)基本不等式的理解,a和b不僅僅是一個(gè)字母,而是一個(gè)符號(hào),它們可以是a、b,也可以是x、y,也可以是一個(gè)多項(xiàng)式;
(3)此例不是課本例題,比課本例題簡(jiǎn)單,這樣,循序漸進(jìn), 有利于學(xué)生理解不等式的內(nèi)涵。
例2:(1)把36寫(xiě)成兩個(gè)正數(shù)的積,當(dāng)兩個(gè)正數(shù)取什么值時(shí),它們的和最???
(2)把18寫(xiě)成兩個(gè)正數(shù)的和,當(dāng)兩個(gè)正數(shù)取什么值時(shí),它們的積最大?
(讓學(xué)生分組合作、探究完成)
設(shè)計(jì)意圖
(1)此題目利用基本不等式求最值,包含正用,逆用,體現(xiàn)了基本不等式的應(yīng)用價(jià)值;
(2)強(qiáng)調(diào)利用不等式求最值的關(guān)鍵點(diǎn):"正""定""等";
(3)有利于培養(yǎng)學(xué)生團(tuán)結(jié)合作的精神。
練習(xí) :(1)若a,b同號(hào),則
(2)P113 練習(xí)1.2
設(shè)計(jì)意圖
鞏固基本不等式,讓學(xué)生熟悉公式,并學(xué)會(huì)應(yīng)用。
小結(jié):(讓學(xué)生暢所欲言)
設(shè)計(jì)意圖
有利于發(fā)揮學(xué)生的主觀能動(dòng)性,突出學(xué)生的主體地位。
作業(yè): 必做題:P 113 A組3、4
選做題:
設(shè)計(jì)意圖
(1)必做題是讓學(xué)生鞏固所學(xué)知識(shí),熟練公式應(yīng)用,強(qiáng)化學(xué)生基礎(chǔ)知識(shí)、基本技能的形成;
(2)選做題達(dá)到分層教學(xué)的目的,根據(jù)學(xué)生的實(shí)際情況,對(duì)他們進(jìn)行素質(zhì)教育。
時(shí)間安排:引入約5分鐘
證明基本不等式約10分鐘
幾何意義約10分鐘
知識(shí)應(yīng)用約15分鐘
小結(jié)約5分鐘
五、板書(shū)設(shè)計(jì)
分析法證明
幾何解釋
例題講解
小結(jié)
作業(yè)
例2
以上是我對(duì)這節(jié)課的教學(xué)設(shè)計(jì),懇請(qǐng)各位評(píng)委老師指導(dǎo),謝謝!
一、創(chuàng)設(shè)情境
問(wèn)題畫(huà)出函數(shù)y=的圖象,根據(jù)圖象,指出:
(1)x取什么值時(shí),函數(shù)值y等于零?
(2)x取什么值時(shí),函數(shù)值y始終大于零?
二、探究歸納
問(wèn)一元一次方程=0的解與函數(shù)y=的圖象有什么關(guān)系?
答一元一次方程=0的解就是函數(shù)y=的圖象上當(dāng)y=0時(shí)的x的值.
問(wèn)一元一次方程=0的解,不等式>0的解集與函數(shù)y=的圖象有什么關(guān)系?
答不等式>0的解集就是直線y=在x軸上方部分的x的取值范圍.
三、實(shí)踐應(yīng)用
例1畫(huà)出函數(shù)y=-x-2的圖象,根據(jù)圖象,指出:
(1)x取什么值時(shí),函數(shù)值y等于零?
(2)x取什么值時(shí),函數(shù)值y始終大于零?
解過(guò)(-2,0),(0,-2)作直線,如圖.
(1)當(dāng)x=-2時(shí),y=0;
(2)當(dāng)x<-2時(shí),y>0.
例2利用圖象解不等式(1)2x-5>-x+1,(2)2x-5<-x+1.
解設(shè)y1=2x-5,y2=-x+1,
在直角坐標(biāo)系中畫(huà)出這兩條直線,如下圖所示.
兩條直線的交點(diǎn)坐標(biāo)是(2,-1),由圖可知:
(1)2x-5>-x+1的解集是y1>y2時(shí)x的取值范圍,為x>-2;
(2)2x-5<-x+1的解集是y1<y2時(shí)x的取值范圍,為x<-2.
四、交流反思
運(yùn)用函數(shù)的圖象來(lái)解釋一元一次方程、一元一次不等式的解集,并能通過(guò)函數(shù)圖象來(lái)回答一元一次方程、一元一次不等式的解集.
五、檢測(cè)反饋
1.已知函數(shù)y=4x-3.當(dāng)x取何值時(shí),函數(shù)的圖象在第四象限?
2.畫(huà)出函數(shù)y=3x-6的圖象,根據(jù)圖象,指出:
(1)x取什么值時(shí),函數(shù)值y等于零?
(2)x取什么值時(shí),函數(shù)值y大于零?
(3)x取什么值時(shí),函數(shù)值y小于零?
3.畫(huà)出函數(shù)y=-0.5x-1的圖象,根據(jù)圖象?
幼兒園教案《不等式與不等式組教案錦集》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專(zhuān)門(mén)為給您提供幼兒園教案而創(chuàng)建的網(wǎng)站。同時(shí),yjs21.com還為您精選準(zhǔn)備了不等式教案專(zhuān)題,希望您能喜歡!
相關(guān)推薦
依據(jù)您的要求,筆者檢索出《基本不等式教案》這篇文章。教師每節(jié)課都需要一份完整的教學(xué)課件,因此我們必須認(rèn)真地撰寫(xiě)每份課題策劃和制作好每份教學(xué)課件。高質(zhì)量的教案和課件是能夠刺激學(xué)生的學(xué)習(xí)興趣的。我們希望這篇文章可以對(duì)您有所幫助!...
經(jīng)驗(yàn)時(shí)常告訴我們,做事要提前做好準(zhǔn)備。在平日里的學(xué)習(xí)中,幼兒園教師時(shí)常會(huì)提前準(zhǔn)備好有用的資料。資料可以指人事物的相關(guān)多類(lèi)信息、情報(bào)。有了資料才能更好地安排接下來(lái)的學(xué)習(xí)工作!你是否收藏了一些有用的幼師資料內(nèi)容呢?以下是由小編為大家整理的“2023不等式課件14篇”,僅供參考,歡迎大家閱讀。七年級(jí)數(shù)學(xué)不...
最新更新