作為一名無(wú)私奉獻(xiàn)的老師,就難以避免地要準(zhǔn)備教案,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。教案要怎么寫(xiě)呢?以下是小編幫大家整理的高中數(shù)學(xué)優(yōu)秀教案(通用7篇),希望能夠幫助到大家。
一、指導(dǎo)思想與理論依據(jù)
數(shù)學(xué)是一門(mén)培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過(guò)程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問(wèn)題情境——提出數(shù)學(xué)問(wèn)題——嘗試解決問(wèn)題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類(lèi)比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問(wèn)題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
二、教材分析
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(人教A版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時(shí),教學(xué)內(nèi)容為公式(二)、(三)、(四).教材要求通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對(duì)稱(chēng)思想發(fā)現(xiàn)任意角 與 、 、 終邊的對(duì)稱(chēng)關(guān)系,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四).同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
三、學(xué)情分析
本節(jié)課的授課對(duì)象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動(dòng)手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容.
四、教學(xué)目標(biāo)
(1).基礎(chǔ)知識(shí)目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過(guò)程,掌握正弦、余弦、正切的誘導(dǎo)公式;
(2).能力訓(xùn)練目標(biāo):能正確運(yùn)用誘導(dǎo)公式求任意角的正弦、余弦、正切值,以及進(jìn)行簡(jiǎn)單的三角函數(shù)求值與化簡(jiǎn);
(3).創(chuàng)新素質(zhì)目標(biāo):通過(guò)對(duì)公式的推導(dǎo)和運(yùn)用,提高三角恒等變形的能力和滲透化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力;
(4).個(gè)性品質(zhì)目標(biāo):通過(guò)誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的`本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀.
五、教學(xué)重點(diǎn)和難點(diǎn)
1.教學(xué)重點(diǎn)
理解并掌握誘導(dǎo)公式.
2.教學(xué)難點(diǎn)
正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡(jiǎn)三角函數(shù)式.
六、教法學(xué)法以及預(yù)期效果分析
高中數(shù)學(xué)優(yōu)秀教案高中數(shù)學(xué)教學(xué)設(shè)計(jì)與教學(xué)反思
“授人以魚(yú)不如授之以魚(yú)”, 作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想方法, 如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究.下面我從教法、學(xué)法、預(yù)期效果等三個(gè)方面做如下分析.
1.教法
數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動(dòng)的教學(xué),而不僅僅是數(shù)學(xué)活動(dòng)的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識(shí),更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì).
在本節(jié)課的教學(xué)過(guò)程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線(xiàn),盡力滲透類(lèi)比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問(wèn)題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”, 由易到難,由特殊到一般,盡力營(yíng)造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂(lè)和成功的喜悅.
2.學(xué)法
“現(xiàn)代的文盲不是不識(shí)字的人,而是沒(méi)有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識(shí)點(diǎn),卻忽略了學(xué)生接受知識(shí)需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情.如何能讓學(xué)生最大程度的消化知識(shí),提高學(xué)習(xí)熱情是教者必須思考的問(wèn)題.
在本節(jié)課的教學(xué)過(guò)程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問(wèn)題、共同探討、解決問(wèn)題 簡(jiǎn)單應(yīng)用、重現(xiàn)探索過(guò)程、練習(xí)鞏固。讓學(xué)生參與探索的全部過(guò)程,讓學(xué)生在獲取新知識(shí)及解決問(wèn)題的方法后,合作交流、共同探索,使之由被動(dòng)學(xué)習(xí)轉(zhuǎn)化為主動(dòng)的自主學(xué)習(xí).
3.預(yù)期效果
本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過(guò)程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡(jiǎn)單的化簡(jiǎn)問(wèn)題.
七、教學(xué)流程設(shè)計(jì)
(一)創(chuàng)設(shè)情景
1.復(fù)習(xí)銳角300,450,600的三角函數(shù)值;
2.復(fù)習(xí)任意角的三角函數(shù)定義;
3.問(wèn)題:由 ,你能否知道sin2100的值嗎?引如新課.
設(shè)計(jì)意圖
高中數(shù)學(xué)優(yōu)秀教案 高中數(shù)學(xué)教學(xué)設(shè)計(jì)與教學(xué)反思
自信的鼓勵(lì)是增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡(jiǎn)單易做的題加強(qiáng)了每個(gè)學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問(wèn)題的出現(xiàn),讓學(xué)生既有好像會(huì)做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機(jī)會(huì)證明我能行,從而思考解決的辦法.
(二)新知探究
1. 讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;
2.讓學(xué)生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點(diǎn)的坐標(biāo)有什么關(guān)系;
3.Sin2100與sin300之間有什么關(guān)系.
設(shè)計(jì)意圖
由特殊問(wèn)題的引入,使學(xué)生容易了解,實(shí)現(xiàn)教學(xué)過(guò)程的平淡過(guò)度,為同學(xué)們探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系做好鋪墊.
(三)問(wèn)題一般化
探究一
1.探究發(fā)現(xiàn)任意角 的終邊與 的終邊關(guān)于原點(diǎn)對(duì)稱(chēng);
2.探究發(fā)現(xiàn)任意角 的終邊和 角的終邊與單位圓的交點(diǎn)坐標(biāo)關(guān)于原點(diǎn)對(duì)稱(chēng);
3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系.
設(shè)計(jì)意圖
首先應(yīng)用單位圓,并以對(duì)稱(chēng)為載體,用聯(lián)系的觀點(diǎn),把單位圓的性質(zhì)與三角函數(shù)聯(lián)系起來(lái),數(shù)形結(jié)合,問(wèn)題的設(shè)計(jì)提問(wèn)從特殊到一般,從線(xiàn)對(duì)稱(chēng)到點(diǎn)對(duì)稱(chēng)到三角函數(shù)值之間的關(guān)系,逐步上升,一氣呵成誘導(dǎo)公式二.同時(shí)也為學(xué)生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習(xí)設(shè)計(jì)為了熟悉公式一,讓學(xué)生感知到成功的喜悅,進(jìn)而敢于挑戰(zhàn),敢于前進(jìn)
(四)練習(xí)
利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.
(1). ;(2). ;(3). .
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問(wèn)題.
(五)問(wèn)題變形
由sin3000= -sin600 出發(fā),用三角的定義引導(dǎo)學(xué)生求出 sin(-3000),Sin150 0值,讓學(xué)生聯(lián)想若已知sin3000= -sin600 ,能否求出sin(-3000),Sin150 0)的值. 學(xué)生自主探究
一、教學(xué)內(nèi)容分析
圓錐曲線(xiàn)的定義反映了圓錐曲線(xiàn)的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象,恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡(jiǎn)馭繁,因此,在學(xué)習(xí)了橢圓、雙曲線(xiàn)、拋物線(xiàn)的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線(xiàn)定義來(lái)熟練的解題”。
二、學(xué)生學(xué)習(xí)情況分析
我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。
三、設(shè)計(jì)思想
由于這部分知識(shí)較為抽象,如果離開(kāi)感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情,在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率。
四、教學(xué)目標(biāo)
1.深刻理解并熟練掌握?qǐng)A錐曲線(xiàn)的定義,能靈活應(yīng)用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線(xiàn)方程、漸近線(xiàn)、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線(xiàn)的方程。
2.通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線(xiàn)定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
五、教學(xué)重點(diǎn)與難點(diǎn):
教學(xué)重點(diǎn)
1.對(duì)圓錐曲線(xiàn)定義的理解
2.利用圓錐曲線(xiàn)的定義求“最值”
3.“定義法”求軌跡方程
教學(xué)難點(diǎn):
巧用圓錐曲線(xiàn)定義解題
六、教學(xué)過(guò)程設(shè)計(jì)
【設(shè)計(jì)思路】
(一)開(kāi)門(mén)見(jiàn)山,提出問(wèn)題
一上課,我就直截了當(dāng)?shù)亟o出——
例題1:(1) 已知A(-2,0), B(2,0)動(dòng)點(diǎn)M滿(mǎn)足|MA|+|MB|=2,則點(diǎn)M的軌跡是( )。
(A)橢圓 (B)雙曲線(xiàn) (C)線(xiàn)段 (D)不存在
(2)已知?jiǎng)狱c(diǎn) M(x,y)滿(mǎn)足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是( )。
(A)橢圓 (B)雙曲線(xiàn) (C)拋物線(xiàn) (D)兩條相交直線(xiàn)
【設(shè)計(jì)意圖】
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線(xiàn)的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的'問(wèn)題。
為了加深學(xué)生對(duì)圓錐曲線(xiàn)定義理解,我以圓錐曲線(xiàn)的定義的運(yùn)用為主線(xiàn),精心準(zhǔn)備了兩道練習(xí)題。
【學(xué)情預(yù)設(shè)】
估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線(xiàn)的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說(shuō)出:若想答案是其他選項(xiàng)的話(huà),條件要怎么改?這對(duì)于已學(xué)完圓錐曲線(xiàn)這部分知識(shí)的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費(fèi)一番周折—— 如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)2
5這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5
入手,考慮通過(guò)適當(dāng)?shù)淖冃?,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。
在對(duì)學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線(xiàn)的中心坐標(biāo)是 ,實(shí)軸長(zhǎng)為 ,焦距為 。以深化對(duì)概念的理解。
(二)理解定義、解決問(wèn)題
例2 (1)已知?jiǎng)訄AA過(guò)定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內(nèi)切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點(diǎn)P(-2,2), 求|PA|
【設(shè)計(jì)意圖】
運(yùn)用圓錐曲線(xiàn)定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問(wèn)題化歸為幾何中求最大(小)值的模式,是解析幾何問(wèn)題中的一種常見(jiàn)題型,也是學(xué)生們比較容易混淆的一類(lèi)問(wèn)題。例2的設(shè)置就是為了方便學(xué)生的辨析。
【學(xué)情預(yù)設(shè)】
根據(jù)以往的經(jīng)驗(yàn),多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準(zhǔn)確寫(xiě)出點(diǎn)A的軌跡,有了練習(xí)題1的鋪墊,這個(gè)問(wèn)題對(duì)學(xué)生們來(lái)講就顯得頗為簡(jiǎn)單,因此面對(duì)例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對(duì)于例2(2)這樣相對(duì)比較陌生的問(wèn)題,學(xué)生就無(wú)從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來(lái),這樣就容易和第二定義聯(lián)系起來(lái),從而找到解決本題的突破口。
(三)自主探究、深化認(rèn)識(shí)
如果時(shí)間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會(huì)——
練習(xí):設(shè)點(diǎn)Q是圓C:(x1)2225|AB|的最小值。 3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內(nèi)一點(diǎn),AQ的垂直平分線(xiàn)與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。
引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì)是什么?
【設(shè)計(jì)意圖】 練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺(tái),當(dāng)然,如果課堂上時(shí)間允許的話(huà),
可借助“多媒體課件”,引導(dǎo)學(xué)生對(duì)自己的結(jié)論進(jìn)行驗(yàn)證。
【知識(shí)鏈接】
(一)圓錐曲線(xiàn)的定義
1. 圓錐曲線(xiàn)的第一定義
2. 圓錐曲線(xiàn)的統(tǒng)一定義
(二)圓錐曲線(xiàn)定義的應(yīng)用舉例
1.雙曲線(xiàn)1的兩焦點(diǎn)為F1、F2,P為曲線(xiàn)上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P到右準(zhǔn)線(xiàn)的距離。
2.|PF1||PF2|2.P為等軸雙曲線(xiàn)x2y2a2上一點(diǎn), F1、F2為兩焦點(diǎn),O為雙曲線(xiàn)的中心,求的|PO|取值范圍。
3.在拋物線(xiàn)y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線(xiàn)的焦點(diǎn)F的距離為5,求拋物線(xiàn)的方程和點(diǎn)A的坐標(biāo)。
4.(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。
x2y211(2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線(xiàn)1的右焦點(diǎn),M在雙曲線(xiàn)右支上移動(dòng),當(dāng)|AM||MF|最小時(shí),求M點(diǎn)的坐標(biāo)。
(3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線(xiàn)y,在拋物線(xiàn)上求一點(diǎn)M,使|PM|+|FM|最小。
5.已知A(4,0),B(2,2)是橢圓1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最小值與最大值。
七、教學(xué)反思
1.本課將借助于,將使全體學(xué)生參與活動(dòng)成為可能,使原來(lái)令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢(shì)。
2.利用兩個(gè)例題及其引申,通過(guò)一題多變,層層深入的探索,以及對(duì)猜測(cè)結(jié)果的檢測(cè)研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會(huì)一個(gè)問(wèn)題的求解到掌握一類(lèi)問(wèn)題的解決方法,循序漸進(jìn)的讓學(xué)生把握這類(lèi)問(wèn)題的解法;將學(xué)生容易混淆的兩類(lèi)求“最值問(wèn)題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動(dòng)量并不會(huì)小。
總之,如何更好地選擇符合學(xué)生具體情況,滿(mǎn)足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會(huì),能夠使學(xué)生在學(xué)習(xí)新知識(shí)的同時(shí),激發(fā)起求知的欲望,在尋求解決問(wèn)題的辦法的過(guò)程中獲得自信和成功的體驗(yàn),于不知不覺(jué)中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。
函數(shù)的奇偶性
函數(shù)的奇偶性是函數(shù)的重要性質(zhì),是對(duì)函數(shù)概念的深化.它把自變量取相反數(shù)時(shí)函數(shù)值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數(shù)的圖像關(guān)于y軸對(duì)稱(chēng),奇函數(shù)的圖像關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱(chēng).這樣,就從數(shù)、形兩個(gè)角度對(duì)函數(shù)的奇偶性進(jìn)行了定量和定性的分析.教材首先通過(guò)對(duì)具體函數(shù)的圖像及函數(shù)值對(duì)應(yīng)表歸納和抽象,概括出了函數(shù)奇偶性的準(zhǔn)確定義.然后,為深化對(duì)概念的理解,舉出了奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)的函數(shù)和非奇非偶函數(shù)的實(shí)例.最后,為加強(qiáng)前后聯(lián)系,從各個(gè)角度研究函數(shù)的性質(zhì),講清了奇偶性和單調(diào)性的.聯(lián)系.這節(jié)課的重點(diǎn)是函數(shù)奇偶性的定義,難點(diǎn)是根據(jù)定義判斷函數(shù)的奇偶性.
教學(xué)目標(biāo):
1.通過(guò)具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗(yàn)數(shù)學(xué)概念的建立過(guò)程,培養(yǎng)其抽象的概括能力.
2.理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡(jiǎn)單函數(shù)的奇偶性.
3.在經(jīng)歷概念形成的過(guò)程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗(yàn)數(shù)學(xué)既是抽象的又是具體的任務(wù)分析
這節(jié)內(nèi)容學(xué)生在初中雖沒(méi)學(xué)過(guò),但已經(jīng)學(xué)習(xí)過(guò)具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,以便于學(xué)生理解.在引入概念時(shí)始終結(jié)合具體函數(shù)的圖像,以增加直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時(shí)為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對(duì)于概念可從代數(shù)特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點(diǎn)對(duì)稱(chēng)的非空數(shù)集;對(duì)于在有定義的奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念———非奇非偶函數(shù).關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想效果.
一、問(wèn)題情景
1.觀察如下兩圖,思考并討論以下問(wèn)題:
(1)這兩個(gè)函數(shù)圖像有什么共同特征?
(2)相應(yīng)的兩個(gè)函數(shù)值對(duì)應(yīng)表是如何體現(xiàn)這些特征的?可以看到兩個(gè)函數(shù)的圖像都關(guān)于y軸對(duì)稱(chēng).從函數(shù)值對(duì)應(yīng)表可以看到,當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的兩個(gè)函數(shù)值相同.
對(duì)于函數(shù)f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事實(shí)上,對(duì)于R內(nèi)任意的一個(gè)x,都有f(-x)=(-x)2=x2=f(x).此時(shí),稱(chēng)函數(shù)y=x2為偶函數(shù).
2.觀察函數(shù)f(x)=x和f(x)=的圖像,并完成下面的兩個(gè)函數(shù)值對(duì)應(yīng)表,然后說(shuō)出這兩個(gè)函數(shù)有什么共同特征.
22可以看到兩個(gè)函數(shù)的圖像都關(guān)于原點(diǎn)對(duì)稱(chēng).函數(shù)圖像的這個(gè)特征,反映在解析式上就是:當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的函數(shù)值f(x)也是一對(duì)相反數(shù),即對(duì)任一x∈R都有f(-x)=-f(x).此時(shí),稱(chēng)函數(shù)y=f(x)為奇函數(shù).
二、建立模型
由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義
1.奇、偶函數(shù)的定義
如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫作奇函數(shù).如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫作偶函數(shù).
2.提出問(wèn)題,組織學(xué)生討論
(1)如果定義在R上的函數(shù)f(x)滿(mǎn)足f(-2)=f(2),那么f(x)是偶函數(shù)嗎? (f(x)不一定是偶函數(shù))
(2)奇、偶函數(shù)的圖像有什么特征?
(奇、偶函數(shù)的圖像分別關(guān)于原點(diǎn)、y軸對(duì)稱(chēng)) (3)奇、偶函數(shù)的定義域有什么特征? (奇、偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng))
三、解釋?xiě)?yīng)用[例題]
1.判斷下列函數(shù)的奇偶性.
注:①規(guī)范解題格式;②對(duì)于(5)要注意定義域x∈(-1,1].
2.已知:定義在R上的函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x(1+x),求f(x)的表達(dá)式.
解:(1)任取x0,∴f(-x)=-x(1-x),
而f(x)是奇函數(shù),∴f(-x)=-f(x).∴f(x)=x(1-x).
(2)當(dāng)x=0時(shí),f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)上是增函數(shù),還是減函數(shù),并證明你的結(jié)論.
解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對(duì)稱(chēng),猜想f(x)在(0,+∞)上是增函數(shù),證明如下:
任取x1>x2>0,則-x1
∵f(x)在(-∞,0)上是減函數(shù),∴f(-x1)>f(-x2).又f(x)是偶函數(shù),∴f(x1)>f(x2).
∴f(x)在(0,+∞)上是增函數(shù).
思考:奇函數(shù)或偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)區(qū)間上的單調(diào)性有何關(guān)系?
[練習(xí)]
1.已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問(wèn)f(x)在[-b,-a]上的單調(diào)性如何.
2. f(x)=-x3|x|的大致圖像可能是()
3.函數(shù)f(x)=ax2+bx+c,(a,b,c∈R),當(dāng)a,b,c滿(mǎn)足什么條件時(shí),(1)函數(shù)f(x)是偶函數(shù).(2)函數(shù)f(x)是奇函數(shù). 4.設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
四、拓展延伸
1.有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個(gè)? 2.設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù).
4.一個(gè)定義在R上的函數(shù),是否都可以表示為一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和的形式?
教學(xué)目標(biāo):
(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問(wèn)題.
(2)進(jìn)一步理解曲線(xiàn)的方程和方程的曲線(xiàn).
(3)初步掌握求曲線(xiàn)方程的方法.
(4)通過(guò)本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題和轉(zhuǎn)化的能力.
教學(xué)重點(diǎn)、難點(diǎn):求曲線(xiàn)的方程.
教學(xué)用具:
計(jì)算機(jī).
教學(xué)方法:
啟發(fā)引導(dǎo)法,討論法.
教學(xué)過(guò)程:
【引入】
1.提問(wèn):什么是曲線(xiàn)的方程和方程的曲線(xiàn).
學(xué)生思考并回答.教師強(qiáng)調(diào).
2.坐標(biāo)法和解析幾何的意義、基本問(wèn)題.
對(duì)于一個(gè)幾何問(wèn)題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線(xiàn),通過(guò)研究方程的性質(zhì)間接地來(lái)研究曲線(xiàn)的性質(zhì),這一研究幾何問(wèn)題的方法稱(chēng)為坐標(biāo)法,這門(mén)科學(xué)稱(chēng)為解析幾何.解析幾何的兩大基本問(wèn)題就是:
(1)根據(jù)已知條件,求出表示平面曲線(xiàn)的方程.
(2)通過(guò)方程,研究平面曲線(xiàn)的性質(zhì).
事實(shí)上,在前邊所學(xué)的直線(xiàn)方程的理論中也有這樣兩個(gè)基本問(wèn)題.而且要先研究如何求出曲線(xiàn)方程,再研究如何用方程研究曲線(xiàn).本節(jié)課就初步研究曲線(xiàn)方程的求法.
【問(wèn)題】
如何根據(jù)已知條件,求出曲線(xiàn)的方程.
【實(shí)例分析】
例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線(xiàn)段的垂直平分線(xiàn)的方程.
首先由學(xué)生分析:根據(jù)直線(xiàn)方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決.
解法一:易求線(xiàn)段的中點(diǎn)坐標(biāo)為(1,3),
由斜率關(guān)系可求得l的斜率為
于是有
即l的方程為
①
分析、引導(dǎo):上述問(wèn)題是我們?cè)缇蛯W(xué)過(guò)的,用點(diǎn)斜式就可解決.可是,你們是否想過(guò)①恰好就是所求的嗎?或者說(shuō)①就是直線(xiàn)的方程?根據(jù)是什么,有證明嗎?
(通過(guò)教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒(méi)有解決的問(wèn)題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).
證明:(1)曲線(xiàn)上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解.
設(shè)是線(xiàn)段的垂直平分線(xiàn)上任意一點(diǎn),則
即
將上式兩邊平方,整理得
這說(shuō)明點(diǎn)的坐標(biāo)是方程的解.
(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線(xiàn)上的點(diǎn).
設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則
到、的距離分別為
所以,即點(diǎn)在直線(xiàn)上.
綜合(1)、(2),①是所求直線(xiàn)的方程.
至此,證明完畢.回顧上述內(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線(xiàn)上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線(xiàn)段的垂直平分線(xiàn)上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見(jiàn),這個(gè)證明過(guò)程就表明一種求解過(guò)程,下面試試看:
解法二:設(shè)是線(xiàn)段的垂直平分線(xiàn)上任意一點(diǎn),也就是點(diǎn)屬于集合
由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿(mǎn)足.顯然,求解過(guò)程就說(shuō)明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.
這樣我們就有兩種求解方程的方法,而且解法二不借助直線(xiàn)方程的理論,又非常自然,還體現(xiàn)了曲線(xiàn)方程定義中點(diǎn)集與對(duì)應(yīng)的思想.因此是個(gè)好方法.
讓我們用這個(gè)方法試解如下問(wèn)題:
例2:點(diǎn)與兩條互相垂直的直線(xiàn)的距離的積是常數(shù)求點(diǎn)的軌跡方程.
分析:這是一個(gè)純粹的幾何問(wèn)題,連坐標(biāo)系都沒(méi)有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線(xiàn)作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進(jìn)行求解.
求解過(guò)程略.
【概括總結(jié)】通過(guò)學(xué)生討論,師生共同總結(jié):
分析上面兩個(gè)例題的求解過(guò)程,我們總結(jié)一下求解曲線(xiàn)方程的大體步驟:
首先應(yīng)有坐標(biāo)系;其次設(shè)曲線(xiàn)上任意一點(diǎn);然后寫(xiě)出表示曲線(xiàn)的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正.說(shuō)得更準(zhǔn)確一點(diǎn)就是:
(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線(xiàn)上任意一點(diǎn)的坐標(biāo);
(2)寫(xiě)出適合條件的'點(diǎn)的集合;
(3)用坐標(biāo)表示條件,列出方程;
(4)化方程為最簡(jiǎn)形式;
(5)證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線(xiàn)上的點(diǎn).
一般情況下,求解過(guò)程已表明曲線(xiàn)上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過(guò)程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說(shuō)明以方程的解為坐標(biāo)的點(diǎn)都是曲線(xiàn)上的點(diǎn).所以,通常情況下證明可省略,不過(guò)特殊情況要說(shuō)明.
上述五個(gè)步驟可簡(jiǎn)記為:建系設(shè)點(diǎn);寫(xiě)出集合;列方程;化簡(jiǎn);修正.
下面再看一個(gè)問(wèn)題:
例3:已知一條曲線(xiàn)在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線(xiàn)的方程.
【動(dòng)畫(huà)演示】用幾何畫(huà)板演示曲線(xiàn)生成的過(guò)程和形狀,在運(yùn)動(dòng)變化的過(guò)程中尋找關(guān)系.
解:設(shè)點(diǎn)是曲線(xiàn)上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合
由距離公式,點(diǎn)適合的條件可表示為
①
將①式移項(xiàng)后再兩邊平方,得
化簡(jiǎn)得
由題意,曲線(xiàn)在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線(xiàn),所以曲線(xiàn)的方程應(yīng)為,它是關(guān)于軸對(duì)稱(chēng)的拋物線(xiàn),但不包括拋物線(xiàn)的頂點(diǎn),如圖2中所示.
【練習(xí)鞏固】
題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、 、,且有,求點(diǎn)軌跡方程.
分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線(xiàn)為一個(gè)坐標(biāo)軸,這條邊的垂直平分線(xiàn)為另一個(gè)軸,建立直角坐標(biāo)系比較簡(jiǎn)單,如圖3所示.設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為.
根據(jù)條件,代入坐標(biāo)可得
化簡(jiǎn)得
①
由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線(xiàn)方程可表示為
【小結(jié)】師生共同總結(jié):
(1)解析幾何研究研究問(wèn)題的方法是什么?
(2)如何求曲線(xiàn)的方程?
(3)請(qǐng)對(duì)求解曲線(xiàn)方程的五個(gè)步驟進(jìn)行評(píng)價(jià).各步驟的作用,哪步重要,哪步應(yīng)注意什么?
【作業(yè)】課本第72頁(yè)練習(xí)1,2,3;
一、概述
教材內(nèi)容:等比數(shù)列的概念和通項(xiàng)公式的推導(dǎo)及簡(jiǎn)單應(yīng)用 教材難點(diǎn):靈活應(yīng)用等比數(shù)列及通項(xiàng)公式解決一般問(wèn)題 教材重點(diǎn):等比數(shù)列的概念和通項(xiàng)公式
二、教學(xué)目標(biāo)分析
1. 知識(shí)目標(biāo)
1)
2) 掌握等比數(shù)列的定義 理解等比數(shù)列的通項(xiàng)公式及其推導(dǎo)
2.能力目標(biāo)
1)學(xué)會(huì)通過(guò)實(shí)例歸納概念
2)通過(guò)學(xué)習(xí)等比數(shù)列的通項(xiàng)公式及其推導(dǎo)學(xué)會(huì)歸納假設(shè)
3)提高數(shù)學(xué)建模的能力
3、情感目標(biāo):
1)充分感受數(shù)列是反映現(xiàn)實(shí)生活的模型
2)體會(huì)數(shù)學(xué)是來(lái)源于現(xiàn)實(shí)生活并應(yīng)用于現(xiàn)實(shí)生活
3)數(shù)學(xué)是豐富多彩的而不是枯燥無(wú)味的`
三、教學(xué)對(duì)象及學(xué)習(xí)需要分析
1、 教學(xué)對(duì)象分析:
1)高中生已經(jīng)有一定的學(xué)習(xí)能力,對(duì)各方面的知識(shí)有一定的基礎(chǔ),理解能力較強(qiáng)。并掌握了函數(shù)及個(gè)別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學(xué)習(xí)了等差數(shù)列,在學(xué)習(xí)這一章節(jié)時(shí)可聯(lián)系以前所學(xué)的進(jìn)行引導(dǎo)教學(xué)。
2)對(duì)歸納假設(shè)較弱,應(yīng)加強(qiáng)這方面教學(xué)
2、學(xué)習(xí)需要分析:
四. 教學(xué)策略選擇與設(shè)計(jì)
1.課前復(fù)習(xí)
1)復(fù)習(xí)等差數(shù)列的概念及通向公式
2)復(fù)習(xí)指數(shù)函數(shù)及其圖像和性質(zhì)
2.情景導(dǎo)入
一、教學(xué)目標(biāo)
1.知識(shí)與技能
(1)掌握斜二測(cè)畫(huà)法畫(huà)水平設(shè)置的平面圖形的直觀圖。
(2)采用對(duì)比的方法了解在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形兩種方法的各自特點(diǎn)。
2.過(guò)程與方法
學(xué)生通過(guò)觀察和類(lèi)比,利用斜二測(cè)畫(huà)法畫(huà)出空間幾何體的直觀圖。
3.情感態(tài)度與價(jià)值觀
(1)提高空間想象力與直觀感受。
(2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。
(3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn)、難點(diǎn):用斜二測(cè)畫(huà)法畫(huà)空間幾何值的直觀圖。
三、學(xué)法與教學(xué)用具
1.學(xué)法:學(xué)生通過(guò)作圖感受圖形直觀感,并自然采用斜二測(cè)畫(huà)法畫(huà)空間幾何體的過(guò)程。
2.教學(xué)用具:三角板、圓規(guī)
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭示課題
1.我們都學(xué)過(guò)畫(huà)畫(huà),這節(jié)課我們畫(huà)一物體:圓柱
把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫(huà)。
2.學(xué)生畫(huà)完后展示自己的結(jié)果并與同學(xué)交流,比較誰(shuí)畫(huà)的效果更好,思考怎樣才能畫(huà)好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
(二)研探新知
1.例1,用斜二測(cè)畫(huà)法畫(huà)水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫(huà)法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見(jiàn)解,教師及時(shí)給予點(diǎn)評(píng)。
畫(huà)水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫(huà)出多邊形來(lái),因此平面多邊形水平放置時(shí),直觀圖的畫(huà)法可以歸結(jié)為確定點(diǎn)的位置的畫(huà)法。強(qiáng)調(diào)斜二測(cè)畫(huà)法的步驟。
練習(xí)反饋
根據(jù)斜二測(cè)畫(huà)法,畫(huà)出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。
2.例2,用斜二測(cè)畫(huà)法畫(huà)水平放置的圓的直觀圖
教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫(huà)水平放置的多邊形的直觀圖一樣,畫(huà)水平放置的圓的直觀圖,也是要先畫(huà)出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書(shū)畫(huà)法。
3.探求空間幾何體的直觀圖的畫(huà)法
(1)例3,用斜二測(cè)畫(huà)法畫(huà)長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體ABCD-A’B’C’D’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫(huà)好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請(qǐng)說(shuō)出三視圖表示的幾何體?并用斜二測(cè)畫(huà)法畫(huà)出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。
4.平行投影與中心投影
投影出示課本P17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形的各自特點(diǎn)。
5.鞏固練習(xí),課本P16練習(xí)1(1),2,3,4
三、歸納整理
學(xué)生回顧斜二測(cè)畫(huà)法的關(guān)鍵與步驟
四、作業(yè)
1.書(shū)畫(huà)作業(yè),課本P17練習(xí)第5題
2.課外思考課本P16,探究(1)(2)
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問(wèn)題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型。
教學(xué)重難點(diǎn)
利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。
教學(xué)過(guò)程
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題
3、一根為L(zhǎng)cm的線(xiàn),一端固定,另一端懸掛一個(gè)小球,組成一個(gè)單擺,小球擺動(dòng)時(shí),離開(kāi)平衡位置的位移s(單位:cm)與時(shí)間t(單位:s)的函數(shù)關(guān)系是
(1)求小球擺動(dòng)的周期和頻率;
(2)已知g=24500px/s2,要使小球擺動(dòng)的周期恰好是1秒,線(xiàn)的長(zhǎng)度l應(yīng)當(dāng)是多少?
(1)選用一個(gè)函數(shù)來(lái)近似描述這個(gè)港口的水深與時(shí)間的函數(shù)關(guān)系,并給出整點(diǎn)時(shí)的.水深的近似數(shù)值(精確到0.001)。
(2)一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規(guī)定至少要有1.5米的安全間隙(船底與洋底的距離),該船何時(shí)能進(jìn)入港口?在港口能呆多久?
(3)若某船的吃水深度為4米,安全間隙為1.5米,該船在2:00開(kāi)始卸貨,吃水深度以每小時(shí)0.3米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問(wèn)題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁(yè)的“思考”問(wèn)題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。
練習(xí):教材P65面3題
三、小結(jié):
1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問(wèn)題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型。
2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
幼兒園教案《高中數(shù)學(xué)教案優(yōu)秀教案范文(集錦七篇)》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專(zhuān)門(mén)為給您提供幼兒園教案而創(chuàng)建的網(wǎng)站。同時(shí),yjs21.com還為您精選準(zhǔn)備了高中數(shù)學(xué)教案專(zhuān)題,希望您能喜歡!
相關(guān)推薦
作為一名無(wú)私奉獻(xiàn)的老師,就難以避免地要準(zhǔn)備教案,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。教案要怎么寫(xiě)呢?以下是小編幫大家整理的高中數(shù)學(xué)優(yōu)秀教案(通用10篇),希望能夠幫助到大家。高中數(shù)學(xué)教案優(yōu)秀教案范文模板 篇1一、教學(xué)目標(biāo)【知識(shí)與技能】在掌握?qǐng)A的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程...
在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,常常要寫(xiě)一份優(yōu)秀的教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)要遵循教學(xué)過(guò)程的基本規(guī)律,選擇教學(xué)目標(biāo),以解決教什么的問(wèn)題。那么優(yōu)秀的教學(xué)設(shè)計(jì)是什么樣的呢?以下是小編幫大家整理的高中語(yǔ)文優(yōu)秀的教學(xué)設(shè)計(jì)范文,僅供參考,歡迎大家閱讀。高中語(yǔ)文優(yōu)秀教案設(shè)計(jì)理念 篇1【教學(xué)目標(biāo)】1、反復(fù)誦讀體會(huì)...
作為一名無(wú)私奉獻(xiàn)的老師,就難以避免地要準(zhǔn)備教案,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。教案要怎么寫(xiě)呢?以下是小編幫大家整理的高中數(shù)學(xué)優(yōu)秀教案(通用10篇),希望能夠幫助到大家。高中數(shù)學(xué)教案優(yōu)秀教案 篇1一、教材《直線(xiàn)與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線(xiàn)和圓的位置關(guān)系...
每個(gè)老師上課需要準(zhǔn)備的東西是教案課件,我們需要靜下心來(lái)寫(xiě)教案課件。只有老師教案課件寫(xiě)的越好,在教學(xué)過(guò)程學(xué)生也更容易理解。以下的“數(shù)學(xué)高中教案”主題相關(guān)內(nèi)容,是幼兒教師教育網(wǎng)小編特意整理的,感謝您的支持希望您能收藏我們的網(wǎng)站隨時(shí)獲取最新訊息!...
在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,時(shí)常需要用到教案,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。我們?cè)撛趺慈?xiě)教案呢?下面是小編精心整理的高中物理優(yōu)秀教案(精選5篇),僅供參考,歡迎大家閱讀。高中物理優(yōu)秀教案集錦 篇1一、引入1、什么叫波的衍射?2、產(chǎn)生明顯的衍射的條件是什么?學(xué)生答...
最新更新
熱門(mén)欄目