初中數(shù)學(xué)教案。
俗話說,磨刀不誤砍柴工。幼兒園的老師都想教學(xué)工作能使小朋友們學(xué)到知識,大部分的教案都是為了讓學(xué)生的學(xué)習(xí)效率得到提升,教案有助于老師在之后的上課教學(xué)中井然有序的進行。優(yōu)秀有創(chuàng)意的幼兒園教案要怎樣寫呢?以下是小編精心收集整理的初中數(shù)學(xué)教案,帶給大家。請收藏并分享給你的朋友們吧!
教材分析
立體圖形的翻折問題是高二《代數(shù)》(下)中立體幾何的一個學(xué)習(xí)內(nèi)容,它融會貫通于各種立體幾何和幾何體中,對學(xué)生進一步理解立體圖形起著至關(guān)重要的作用。立體圖形的翻折是從學(xué)生生活周圍熟悉的物體入手,使學(xué)生進一步認識立體圖形于平面圖形的關(guān)系;不僅要讓學(xué)生了解幾何體可由平面圖形折疊而成,更重要的是讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗圖形的變化過程,使學(xué)生了解研究立體圖形的方法。
教學(xué)重點
了解平面圖形于折疊后的立體圖形之間的關(guān)系,找到變化過程中的不變量。
教學(xué)難點
轉(zhuǎn)化思想的運用及發(fā)散思維的培養(yǎng)。
學(xué)生分析
學(xué)生在前面已經(jīng)對一些簡單幾何體有了一定的認識,對于求解空間角及空間距離已具備了一定的能力,并且在班級中已初步形成合作交流,敢于探索與實踐的良好習(xí)慣。學(xué)生間相互評價、相互提問的互動的氣氛較濃。
設(shè)計理念
根據(jù)教育課程改革的具體目標,結(jié)合“注重開放與生成,構(gòu)建充滿生命活力的課堂教學(xué)運行體系”的要求,改變課程過于注重知識傳授的傾向,強調(diào)形成積極生動的學(xué)習(xí)態(tài)度,關(guān)注學(xué)生的學(xué)習(xí)興趣和經(jīng)驗,實施開放式教學(xué),讓學(xué)生主動參與學(xué)習(xí)活動,并引導(dǎo)學(xué)生在課堂活動中感悟知識的生成、發(fā)展與變化。
教學(xué)目標
1、使學(xué)生掌握翻折問題的解題方法,并會初步應(yīng)用。
2、培養(yǎng)學(xué)生的`動手實踐能力。在實踐過程中,使學(xué)生提高對立體圖形的分析能力,并在設(shè)疑的同時培養(yǎng)學(xué)生的發(fā)散思維。
3、通過平面圖形與折疊后的立體圖形的對比,向?qū)W生滲透事物間的變化與聯(lián)系觀點,在解題過程中,使學(xué)生理解,將立體圖形中的問題化歸到平面圖形中去解決的轉(zhuǎn)化思想。
教學(xué)流程
一、創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生觀察、設(shè)想、導(dǎo)入課題。
1、如圖(圖略),是一個正方體的展開圖,在原正方體中,有下列命題
(1)AB與EF所在直線平行
(2)AB與CD所在直線異面
(3)MN與EF所在直線成60度
(4)MN與CD所在直線互相垂直其中正確命題的序號是
2、引入課題----翻折
二、學(xué)生通過直觀感知、操作確認等實踐活動,加強對圖形的認識和感受(引導(dǎo)學(xué)生在解題的過程中如何突破難點,從而體現(xiàn)在平面圖形中求解一些不變量對于解空間問題的重要性)。
1、給學(xué)生一個展示自我的空間和舞臺,讓學(xué)生自己講解。教師根據(jù)學(xué)生的講解進一步提出問題。
(1)線段AE與EF的夾角為什么不是60度呢?
(2)AE與FG所成角呢?
(3)AE與GC所成角呢?
(4)在此正四棱柱上若有一小蟲從A點爬到C點最短路徑是什么?經(jīng)過各面呢?
(通過對發(fā)散問題的提出培養(yǎng)學(xué)生的培養(yǎng)精神及轉(zhuǎn)化的教學(xué)思想方法,讓學(xué)生體會折疊圖與展開圖的不同應(yīng)用。)
2、讓學(xué)生觀察電腦演示折疊過程后,再親自動手折疊,針對問題做出回答。
(1)E、F分別處于G1G2、G2G3的什么位置?
(2)選擇哪種擺放方式更利于求解體積呢?
(3)如何求G點到面PEF的距離呢?
(4)PG與面PEF所成角呢?
(5)面GEF與面PEF所成角呢?
(學(xué)生會發(fā)現(xiàn)這幾個問題可在同一個直角三角形中找到答案,然后讓學(xué)生在折紙中找到這個三角形的位置,既而發(fā)現(xiàn)折疊過程中的不變量。)
3、演示MN的運動過程,讓學(xué)生觀察分析解題過程強調(diào)證PN垂直AB的困難性。與學(xué)生共同品位解出這道20xx高考題的喜悅的同時,引導(dǎo)學(xué)生用上題的思路能否更快捷地解出此題呢?
(學(xué)生大膽想象,并通過模型制作確認想象結(jié)果的正確性,從而開辟一條簡捷的翻折思想解題思路。)
三、小結(jié)
1、畫平面圖,并折前圖與折后圖中的字母盡量保持一致。
2、尋找立體圖形中的不變量到平面圖形中求解是關(guān)鍵。
3、注意培養(yǎng)轉(zhuǎn)化思想和發(fā)散思維。
(通過提問方式引導(dǎo)學(xué)生小結(jié)本節(jié)主要知識及學(xué)習(xí)活動,養(yǎng)成學(xué)習(xí)、總結(jié)、學(xué)習(xí)的良好學(xué)習(xí)習(xí)慣,發(fā)散自我評價的作用,培養(yǎng)學(xué)生的語言表達能力。)
四、課外活動
1、完成課上未解決的問題。
2、對與1題折成正三棱柱結(jié)果會怎樣?對于2題改變E、F兩點位置剪成正三棱柱呢?
(通過課外活動學(xué)習(xí)本節(jié)知識內(nèi)容,培養(yǎng)學(xué)生的發(fā)散思維。)
課后反思
本課設(shè)計中,有梯度性的先安排三個小題,讓學(xué)生經(jīng)歷先動手、思考、預(yù)習(xí)這一學(xué)習(xí)過程,然后在課堂上給學(xué)生一個充分展示自我的空間,并且適時發(fā)問的同時幫助學(xué)生找到解決方法。歸納總結(jié)解翻折問題的技巧和作為解題方法的優(yōu)越性。在實施開放式教學(xué)的過程中,注重引導(dǎo)學(xué)生在課堂活動過程中感悟知識的生成、發(fā)展與變化,培養(yǎng)學(xué)生主動探索、敢于實踐、善于發(fā)現(xiàn)的科學(xué)精神以及合作交流的精神和創(chuàng)新意識,將創(chuàng)新的教材、創(chuàng)新的教法與創(chuàng)新的課堂環(huán)境有機地結(jié)合起來,將學(xué)生自主學(xué)習(xí)與創(chuàng)新意識的培養(yǎng)落到實處。
教學(xué)目標
1、使學(xué)生初步掌握一元一次方程解簡單應(yīng)用題的方法和步驟;并會列出一元一次方程解簡單的應(yīng)用題;
2、培養(yǎng)學(xué)生觀察能力,提高他們分析問題和解決問題的能力;
3、使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣、
教學(xué)重點和難點
一元一次方程解簡單的應(yīng)用題的方法和步驟、
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有的認知結(jié)構(gòu)提出問題
在小學(xué)算術(shù)中,我們學(xué)習(xí)了用算術(shù)方法解決實際問題的有關(guān)知識,那么,一個實際問題能否應(yīng)用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應(yīng)用題與用算術(shù)方法解應(yīng)用題相比較,它有什么優(yōu)越性呢?
為了回答上述這幾個問題,我們來看下面這個例題、
例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)、
(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)
解法1:(4+2)÷(3-1)=3、
答:某數(shù)為3、
(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)
解法2:設(shè)某數(shù)為x,則有3x-2=x+4、
解之,得x=3、
答:某數(shù)為3、
縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們學(xué)習(xí)運用一元一次方程解應(yīng)用題的目的之一、
我們知道方程是一個含有未知數(shù)的等式,而等式表示了一個相等關(guān)系、因此對于任何一個應(yīng)用題中提供的條件,應(yīng)首先從中找出一個相等關(guān)系,然后再將這個相等關(guān)系表示成方程、
本節(jié)課,我們就通過實例來說明怎樣尋找一個相等的關(guān)系和把這個相等關(guān)系轉(zhuǎn)化為方程的方法和步驟、
二、師生共同分析、研究一元一次方程解簡單應(yīng)用題的方法和步驟
例2 某面粉倉庫存放的面粉運出 15%后,還剩余42 500千克,這個倉庫原來有多少面粉?
師生共同分析:
1、本題中給出的已知量和未知量各是什么?
2、已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運出重量=剩余重量)
3、若設(shè)原來面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關(guān)系,如何布列方程?
上述分析過程可列表如下:
解:設(shè)原來有x千克面粉,那么運出了15%x千克,由題意,得
x-15%x=42 500,
所以 x=50 000、
答:原來有 50 000千克面粉、
此時,讓學(xué)生討論:本題的相等關(guān)系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?
(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)
教師應(yīng)指出:
(1)這兩種相等關(guān)系的表達形式與“原來重量-運出重量=剩余重量”,雖形式上不同,但實質(zhì)是一樣的,可以任意選擇其中的一個相等關(guān)系來列方程;
(2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿、
依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:
(1)仔細審題,透徹理解題意、即弄清已知量、未知量及其相互關(guān)系,并用字母(如x)表示題中的一個合理未知數(shù);
(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系、(這是關(guān)鍵一步);
(3)根據(jù)相等關(guān)系,正確列出方程、即所列的方程應(yīng)滿足兩邊的量要相等;方程兩邊的代數(shù)式的單位要相同;題中條件應(yīng)充分利用,不能漏也不能將一個條件重復(fù)利用等;
(4)求出所列方程的解;
(5)檢驗后明確地、完整地寫出答案、這里要求的檢驗應(yīng)是,檢驗所求出的解既能使方程成立,又能使應(yīng)用題有意義、
例3 (投影)初一2班第一小組同學(xué)去蘋果園參加勞動,休息時工人師傅摘蘋果分給同學(xué),若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一小組有多少學(xué)生,共摘了多少個蘋果?
(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點撥、解答過程請一名學(xué)生板演,教師巡視,及時糾正學(xué)生在書寫本題時可能出現(xiàn)的各種錯誤、并嚴格規(guī)范書寫格式)
解:設(shè)第一小組有x個學(xué)生,依題意,得
3x+9=5x-(5-4),
解這個方程: 2x=10,
所以 x=5、
其蘋果數(shù)為 3× 5+9=24、
答:第一小組有5名同學(xué),共摘蘋果24個、
學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程、
(設(shè)第一小組共摘了x個蘋果,則依題意,得 )
三、課堂練習(xí)
1、買4本練習(xí)本與3支鉛筆一共用了1、24元,已知鉛筆每支0、12元,問練習(xí)本每本多少元?
2、我國城鄉(xiāng)居民 1988年末的儲蓄存款達到 3 802億元,比 1978年末的儲蓄存款的 18倍還多4億元、求1978年末的儲蓄存款、
3、某工廠女工人占全廠總?cè)藬?shù)的 35%,男工比女工多 252人,求全廠總?cè)藬?shù)、
四、師生共同小結(jié)
首先,讓學(xué)生回答如下問題:
1、本節(jié)課學(xué)習(xí)了哪些內(nèi)容?
2、列一元一次方程解應(yīng)用題的方法和步驟是什么?
3、在運用上述方法和步驟時應(yīng)注意什么?
依據(jù)學(xué)生的回答情況,教師總結(jié)如下:
(1)代數(shù)方法的基本步驟是:全面掌握題意;恰當(dāng)選擇變數(shù);找出相等關(guān)系;布列方程求解;檢驗書寫答案、其中第三步是關(guān)鍵;
(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶、
五、作業(yè)
1、買3千克蘋果,付出10元,找回3角4分、問每千克蘋果多少錢?
2、用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
3、某廠去年10月份生產(chǎn)電視機2 050臺,這比前年10月產(chǎn)量的 2倍還多 150臺、這家工廠前年10月生產(chǎn)電視機多少臺?
4、大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個同樣大小的小箱里,裝滿后還剩余2千克洗衣粉、求每個小箱子里裝有洗衣粉多少千克?
5、把1400獎金分給22名得獎?wù)?,一等獎每?00元,二等獎每人50元、求得到一等獎與二等獎的人數(shù)
教學(xué)目標
1.通過實驗,使學(xué)生相信經(jīng)過大量的重復(fù)實驗后得到的頻率值確實可以作為隨機事件每次發(fā)生的機會的估計值,體會隨機事件中所隱含著的確定性內(nèi)涵。
2.使學(xué)生知道,通過實驗的方法,用頻率估計機會的大小,必須要求實驗是在相同條件下進行的。且在相同條件下,實驗次數(shù)越多,就越有可能得到較好的估計值,但個人所得的值也并不一定相同。
3.培養(yǎng)學(xué)生合作學(xué)習(xí)的能力,并學(xué)會與他人交流思維的過程和結(jié)果。
教學(xué)重難點
重點:頻率與機會的關(guān)系。
難點:如何用頻率估計機會的大小?教學(xué)準備數(shù)枚相同的圖釘。
教學(xué)過程
一、提出問題
上一節(jié)課,通過一系列的實驗和觀察,我們已經(jīng)知道:實驗是估計機會大小的一種方法。我們可以通過實驗,觀察某事件出現(xiàn)的頻率,當(dāng)頻率值逐漸穩(wěn)定時,這個值就可以作為我們對該事件發(fā)生機會的估計。
實際上,在前面的問題中,即使不做實驗,也可以設(shè)法預(yù)先推測出事件發(fā)生的機會,為什么還要花大量時間去進行實驗?zāi)兀?/p>
下面讓我們看另一類問題:
一枚圖釘被拋起后釘尖觸地的機會有多大?
二、分組實驗
1.兩個學(xué)生一個小組,一人拋擲,一人記錄
每個小組拋擲40次,記錄出現(xiàn)釘尖觸地的頻數(shù)
教師負責(zé)把各小組的結(jié)果登錄在黑板上
2.然后把每小組的結(jié)果合起來,分別計算拋擲80次、 120次、 160次、 200次、 240次、 180次、 320次、 360次、 400次、 480次、 520次、 560次后出現(xiàn)釘尖觸地的頻數(shù)及頻率
3.列出統(tǒng)計表,繪制折線圖
4.根據(jù)實驗結(jié)果估計一下釘尖觸地的機會是百分之幾?
5.課本第105頁表15.2.1和圖15.2.2是一位同學(xué)在拋擲圖釘?shù)膶嶒炛挟嫷腵統(tǒng)計表和折線圖。這與你實驗的結(jié)果相同嗎?為什么?
三、深入思考
如果兩個小組使用的是兩種不同形狀的圖釘,那么這兩種圖釘釘尖觸地的機會相同嗎?
能把兩個小組的實驗數(shù)據(jù)合起來進行實驗嗎?
四、概括小結(jié)
從上面的問題可以看出:
1.通過實驗的方法用頻率估計機會的大小,必須要求實驗是在相同條件下進行的。比如,以同樣的方式拋擲同一種圖釘。
2.在相同的條件下,實驗次數(shù)越多,就越有可能得到較好的估計值,但每人所得的值也并不一定相同。
五、用心觀察
我們已經(jīng)知道,在相同條件下,實驗次數(shù)越多,就越有可能得到較好的估計值。那么,總共要做多少次實驗才認為得到的結(jié)果比較可靠呢?
觀察課本第105頁表15.2.1和圖15.2.2 。
當(dāng)實驗進行到多少次以后,所得頻率值就趨于平穩(wěn)了?
( 小結(jié):實驗到頻率值較穩(wěn)定時,結(jié)果比較可靠。這個頻率值也就可以作為這個事件發(fā)生機會的估計值。 )
六、鞏固練習(xí)
課本第107頁練習(xí)第1 、 2題。
七、課堂小結(jié)
這節(jié)課你有什么收獲?還有哪些問題需要老師幫你解決的?
注意:通過實驗的方法用頻率估計機會大小,必須要求實驗是在相同條件下進行的。
八、布置作業(yè)
1 、課本第108頁習(xí)題15.2第2題
2 、課本第106頁做一做
2 、數(shù)字之積為奇數(shù)與偶數(shù)的機會
一、課題引入
為了讓學(xué)生更好地理解正數(shù)與負數(shù)的概念,作為教師有必要了解數(shù)系的發(fā)展.從數(shù)系的發(fā)展歷程來看,微積分的基礎(chǔ)是實數(shù)理論,實數(shù)的基礎(chǔ)是有理數(shù),而有理數(shù)的基礎(chǔ)則是自然數(shù).自然數(shù)為數(shù)學(xué)結(jié)構(gòu)提供了堅實的基礎(chǔ).
對于“數(shù)的發(fā)展”(也即“數(shù)的擴充”),有著兩種不同的認知體系.一是數(shù)的自然擴充過程,如圖1所示,即數(shù)系發(fā)展的自然的、歷史的體系,它反映了人類對數(shù)的認識的歷史發(fā)展進程;另一是數(shù)的邏輯擴充過程,如圖2所示,即數(shù)系發(fā)展所經(jīng)歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數(shù)學(xué)家構(gòu)造的一種邏輯體系,其中綜合反映了現(xiàn)代數(shù)學(xué)中許多思想方法.
二、課題研究
在實際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數(shù)量.這些數(shù)量不僅與5、5000等數(shù)量有關(guān),而且還含有上升與下降、收入與支出等實際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的`實際意義是不同的.
為了準確表達諸如此類的一些具有相反意義的量,僅用小學(xué)學(xué)過的正整數(shù)、正分數(shù)、零,是不夠的.如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的.收入與支出是“意義相反”的兩回事,是不能用同一個數(shù)來表達的.因此,為了準確表達支出5000元,就有必要引入了一種新數(shù)—負數(shù).
我們把所學(xué)過的大于零的數(shù),都稱為正數(shù);而且還可以在正數(shù)的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數(shù),讀作“正5”.
在正數(shù)的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構(gòu)成的數(shù)統(tǒng)稱為負數(shù).“-5”讀作“負5”,“-5000”讀作“負5000”.
于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數(shù)量就有了不同的表達方式.
利用正數(shù)與負數(shù)可以準確地表達或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機器零件的實際尺寸比設(shè)計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機器零件的實際尺寸比設(shè)計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊贏了乙隊2個球,那么可以把甲隊的凈勝球數(shù)記作“+2”,把乙隊的凈勝球數(shù)記作“-2”.
借助實際例子能夠讓學(xué)生較好地理解為什么要引入負數(shù),認識到負數(shù)是為了有效表達與實際生活相關(guān)的一些數(shù)量而引入的一種新數(shù),而不是人為地“硬造”出來的一種“新數(shù)”.
三、鞏固練習(xí)
例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺空調(diào),又該怎樣記錄這筆支出呢?
思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數(shù)或負數(shù)來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.
特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數(shù)量,都用正數(shù)來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數(shù)量則用負數(shù)來表示.
再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.
例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當(dāng)天的收盤價與開盤價的漲跌情況如下表:單位:元
日期周二周三周四周五
開盤+0.16+0.25+0.78+2.12
收盤-0.23-1.32-0.67-0.65
當(dāng)日收盤價
試在表中填寫周二到周五該股票的收盤價.
思路分析:以周二為例,表中數(shù)據(jù)“+0.16”所表示的實際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數(shù)據(jù)“-0.23”則表示“周二該股票收盤時的收盤價比當(dāng)天的開盤價降低了0.23元”.
因此,這五天該股票的開盤價與收盤價分別應(yīng)該按如下的方式進行計算:
周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球隊以主客場的形式進行雙循環(huán)比賽,每兩隊之間都比賽兩場,下表是這三支球隊的比賽成績,其中左欄表示主隊,上行表示客隊,比分中前后兩數(shù)分別是主客隊的進球數(shù),例如3∶2表示主隊進3球客隊進2球.
①結(jié)合你對一元一次方程中的一次的理解,說一說你對一次函數(shù)中的“一次”的理解. ②k可以是怎樣的數(shù)?
③你怎樣認識一次函數(shù)和正比例函數(shù)的關(guān)系?
一個常數(shù)b的`和即 Y=kx+b 定義:一般地,形
如
Y=kx+b( k,b 是常數(shù),k≠0 )的函數(shù),叫做一次函數(shù), 當(dāng)
b=0時,
Y=kx+b即Y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù)。
例1、下列函數(shù)中,Y是X的一次函數(shù)的是( )①Y=X-6②Y=3X③Y=X2④Y=7-X
學(xué)生獨立
A①②③B①③④C①②④D①②③④
例2、寫出下列各題中x與y之間的關(guān)系式,并判
解釋與應(yīng)用
斷,y是否為x的一次函數(shù)?是否為正比例函數(shù)?①汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間(時)之間的關(guān)系式;②圓的面積y(厘米2)與他的半徑x(厘米)之間的關(guān)系:③一棵樹現(xiàn)在高50厘米,每個月長高2厘米,x月后這棵樹的高度y(厘米)之間的關(guān)系式
教學(xué)目標:
1、理解切線的判定定理,并學(xué)會運用。
2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。
教學(xué)重點:切線的判定定理和切線判定的方法。
教學(xué)難點:切線判定定理中所闡述的圓的切線的兩大要素:一是經(jīng)過半徑外端;二是直線垂直于這條半徑;學(xué)生開始時掌握不好并極容易忽視一.
教學(xué)過程:
一、復(fù)習(xí)提問
【教師】問題1.怎樣過直線l上一點P作已知直線的垂線?
問題2.直線和圓有幾種位置關(guān)系?
問題3.如何判定直線l是⊙O的切線?
啟發(fā):(1)直線l和⊙O的公共點有幾個?
(2)圓心O到直線L的距離與半徑的數(shù)量關(guān)系 如何?
學(xué)生答完后,教師強調(diào)(2)是判定直線 l是⊙O的切線的常用方法,即: 定理:圓心O到直線l的距離OA 等于圓的半 (如圖1,投影顯示)
再啟發(fā):若把距離OA理解為 OA⊥l,OA=r;把點A理解為半徑在圓上的端點 ,請同學(xué)們試將上面定理用新的理解改寫成新的命題,此命題就 是這節(jié)課要學(xué)的“切線的判定定理”(板書課題)
二、引入新課內(nèi)容
【學(xué)生】命題:經(jīng)過半徑的在圓上的端點且垂直于半 徑的直線是圓的切線。
證明定理:啟發(fā)學(xué)生分清命題的題設(shè)和結(jié)論,寫出已 知、求證,分析證明思路,閱讀課本P60。
定理:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.
定理的證明:已知:直線l經(jīng)過半徑OA的外端點A,直線l⊥OA,
求證:直線l是⊙O的切線
證明:略
定理的符號語言:∵直線l⊥OA,直線l經(jīng)過半徑OA的外端A
∴直線l為⊙O的切線。
是非題:
(1)垂直于圓的半徑的直線一定是這個圓的切線。 ( )
(2)過圓的半徑的外端的直線一定是這個圓的切線。 ( )
三、例題講解
例1、已知:直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB。
求證:直線AB是⊙O的切線。
引導(dǎo)學(xué)生分析:由于AB過⊙O上的點C,所以連結(jié)OC,只要證明AB⊥OC即可。
證明:連結(jié)OC.
∵OA=OB,CA=CB,
∴AB⊥OC
又∵直線AB經(jīng)過半徑OC的外端C
∴直線AB是⊙O的切線。
練習(xí)1、如圖,已知⊙O的半徑為R,直線AB經(jīng)過⊙O上的點A,并且AB=R,∠OBA=45°。求證:直線AB是⊙O的切線。
練習(xí)2、如圖,已知AB為⊙O的直徑,C為⊙O上一點,AD⊥CD于點D,AC平分∠BAD。
求證:CD是⊙O的切線。
例2、如圖,已知AB是⊙O的直徑,點D在AB的延長線上,且BD=OB,過點D作射線DE,使∠ADE=30°。
求證:DE是⊙O的切線。
思考題:在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,以D為圓心,BD為半徑作圓,問⊙D的切線有幾條?是哪幾條?為什么?
四、小結(jié)
1.切線的判定定理。
2.判定一條直線是圓的切線的方法:
①定義:直線和圓有唯一公共點。
②數(shù)量關(guān)系:直線到圓心的距離等于該圓半徑(即d = r)。[
③切線的判定定理:經(jīng)過半徑外端且與這條半徑垂直的直線是圓的切線。
3.證明一條直線是圓的切線的輔助線和證法規(guī)律。
凡是已知公共點(如:直線經(jīng)過圓上的點;直線和圓有一個公共點;)往往是"連結(jié)"圓心和公共點,證明"垂直"(直線和半徑);若不知公共點,則過圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點,“連半徑,證垂直”;不知公共點,則“作垂直,證半徑”。
五、布置作業(yè):略
《切線的判定》教后體會
本課例《切線的判定》作為市考試院調(diào)研課型兼區(qū)級研討課,我以“教師為引導(dǎo),學(xué)生為主體”的二期課改的理念出發(fā),通過學(xué)生自我活動得到數(shù)學(xué)結(jié)論作為教學(xué)重點,呈現(xiàn)學(xué)生真實的思維過程為教學(xué)宗旨,進行教學(xué)設(shè)計,目的在于讓學(xué)生對知識有一個本質(zhì)的、有效的理解。本節(jié)課切實反映了平時的教學(xué)情況,為前來調(diào)研和研討的老師提供了真實的樣本。反思本節(jié)課,有以下幾個成功與不足之處:
成功之處:
一、 教材的二度設(shè)計順應(yīng)了學(xué)生的認知規(guī)律
這批學(xué)生習(xí)慣于單一知識點的學(xué)習(xí),即得出一個知識點,必須由淺入深反復(fù)進行練習(xí),鞏固后方能加以提升與綜合,否則就會混淆概念或定理的條件和結(jié)論,導(dǎo)致錯誤,久之便會失去學(xué)習(xí)數(shù)學(xué)的興趣和信心。本教時課本上將切線判定定理和性質(zhì)定理的導(dǎo)出作為第一課時,兩個定理的運用和切線的兩種常用的判定方法作為第二課時,學(xué)生往往會因第一時間得不到及時的鞏固,對定理本質(zhì)的東西不能很好地理解,在運用時抓不住關(guān)鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學(xué)生更是因知識點多不知所措,在云里霧里。二度設(shè)計將切線的判定方法作為第一課時,切線的性質(zhì)定理以及兩個定理的綜合運用作為第二課時,這樣的設(shè)計即是對前面所學(xué)的“直線與圓相切的判定方法”的復(fù)習(xí),又是對后面學(xué)習(xí)綜合運用兩個定理,合理選擇兩種方法判定切線作了鋪墊,教學(xué)呈現(xiàn)了一個循序漸進、溫過知新的過程。從學(xué)生的反饋情況判斷,教學(xué)效果較為理想。
二、重視學(xué)生數(shù)感的培養(yǎng)呼應(yīng)了課改的理念
數(shù)感類似與語感、樂感、美感,擁有了感覺,知識便會融會貫通,學(xué)習(xí)就會輕松。擁有數(shù)感,不僅會對數(shù)學(xué)知識反應(yīng)靈敏,更會在生活中不知不覺運用數(shù)學(xué)思維方式解決實際問題。本節(jié)課中,兩個例題由教師誘導(dǎo),學(xué)生發(fā)現(xiàn)完成的,而三個習(xí)題則完全放手讓學(xué)生去思考完成,不乏有不會做和做得復(fù)雜的學(xué)生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學(xué)生嘗試總結(jié)規(guī)律,也是對學(xué)生能力的培養(yǎng),在本節(jié)課中,輔助線的規(guī)律是由學(xué)生得出,事實證明,學(xué)生有這樣的理解、概括和表達能力。通過思考得出正確的結(jié)論,這個結(jié)論往往是刻骨銘心的,長此以往,對數(shù)和形的感覺會越來越好。
不足之處:
一、這節(jié)課沒有“高潮”,沒有讓學(xué)生特別興奮激起求知欲的情境,整個教學(xué)過程是在一個平靜、和諧的氛圍中完成的。
二、課的引入太直截了當(dāng),脫離不了應(yīng)試教學(xué)的味道。
三、教學(xué)風(fēng)格的定勢使所授知識不能很合理地與生活實際相聯(lián)系,一定程度上阻礙了學(xué)生解決實際問題能力的發(fā)展。
通過本節(jié)課的教學(xué),我深刻感悟到在教學(xué)實踐中,教師要不斷地充實自己,拓寬知識面,努力突破已有的教學(xué)形狀,適應(yīng)現(xiàn)代教育,適應(yīng)現(xiàn)代學(xué)生。課堂教學(xué)中,敢于實驗,舍得放手,盡量培養(yǎng)學(xué)生主體意識,問題讓學(xué)生自己去揭示,方法讓學(xué)生自己去探索,規(guī)律讓學(xué)生自己去發(fā)現(xiàn),知識讓學(xué)生自己去獲得,教師只提供給學(xué)生現(xiàn)實情境、充足的思考時間和活動空間,給學(xué)生表現(xiàn)自我的機會和成功的體驗,培養(yǎng)學(xué)生的自我意識,發(fā)揮學(xué)生的主體作用,來真正實現(xiàn)《數(shù)學(xué)課程標準》中提出的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者”這一教學(xué)理念。
教學(xué)目標
1。進一步掌握有理數(shù)的運算法則和運算律;
2。使學(xué)生能夠熟練地按有理數(shù)運算順序進行混合運算;
3。注意培養(yǎng)學(xué)生的運算能力。
教學(xué)重點和難點
重點:有理數(shù)的混合運算。
難點:準確地掌握有理數(shù)的運算順序和運算中的符號問題。
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有認知結(jié)構(gòu)提出問題
1、計算(五分鐘練習(xí):
(5)-252;(6)(-2)3;(7)-7+3-6;(8)(-3)×(-8)×25;
(13)(-616)÷(-28);(14)-100-27;(15)(-1)101;(16)021;
(17)(-2)4;(18)(-4)2;(19)-32;(20)-23;
(24)3.4×104÷(-5)。
2、說一說我們學(xué)過的有理數(shù)的運算律:
加法交換律:a+b=b+a;
加法結(jié)合律:(a+b)+c=a+(b+c);
乘法交換律:ab=ba;
乘法結(jié)合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
二、講授新課
前面我們已經(jīng)學(xué)習(xí)了有理數(shù)的加、減、乘、除、乘方等運算,若在一個算式里,含有以上的混合運算,按怎樣的順序進行運算?
1、在只有加減或只有乘除的同一級運算中,按照式子的順序從左向右依次進行。
審題:
(1)運算順序如何?
(2)符號如何?
說明:含有帶分數(shù)的加減法,方法是將整數(shù)部分和分數(shù)部分相加,再計算結(jié)果。帶分數(shù)分成整數(shù)部分和分數(shù)部分時的符號與原帶分數(shù)的符號相同。
課堂練習(xí)
審題:運算順序如何確定?
注意結(jié)果中的負號不能丟。
課堂練習(xí)
計算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);
2、在沒有括號的不同級運算中,先算乘方再算乘除,最后算加減。
例3計算:
(1)(-3)×(-5)2;
(2)[(-3)×(-5)]2;
(3)(-3)2-(-6);
(4)(-4×32)-(-4×3)2。
審題:運算順序如何?
解:(1)(-3)×(-5)2=(-3)×25=-75。
(2)[(-3)×(-5)]2=(15)2=225。
(3)(-3)2-(-6)=9-(-6)=9+6=15。
(4)(-4×32)-(-4×3)2
=(-4×9)-(-12)2
=-36-144
=-180。
注意:搞清(1),(2)的運算順序,(1)中先乘方,再相乘,(2)中先計算括號內(nèi)的,然后再乘方。(3)中先乘方,再相減,(4)中的運算順序要分清,第一項(-4×32)里,先乘方再相乘,第二項(-4×3)2中,小括號里先相乘,再乘方,最后相減。
課堂練習(xí)
計算:
(1)-72;(2)(-7)2;(3)-(-7)2;
(7)(-8÷23)-(-8÷2)3。
例4計算
(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4。
審題:(1)存在哪幾級運算?
(2)運算順序如何確定?
解:(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4
=4-(-25)×(-1)+87÷(-3)×1(先乘方)
=4-25-29(再乘除)
=-50。(最后相加)
注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1。
課堂練習(xí)
計算:
(1)-9+5×(-6)-(-4)2÷(-8);
(2)2×(-3)3-4×(-3)+15。
3、在帶有括號的運算中,先算小括號,再算中括號,最后算大括號。
課堂練習(xí)
計算:
三、小結(jié)
教師引導(dǎo)學(xué)生一起總結(jié)有理數(shù)混合運算的規(guī)律。
1、先乘方,再乘除,最后加減;
2、同級運算從左到右按順序運算;
3、若有括號,先小再中最后大,依次計算。
四、作業(yè)
1、計算:
2、計算:
(1)-8+4÷(-2);(2)6-(-12)÷(-3);
(3)3·(-4)+(-28)÷7;(4)(-7)(-5)-90÷(-15);
3、計算:
4、計算:
(7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5。
5、計算(題中的字母均為自然數(shù)):
(1)(-12)2÷(-4)3-2×(-1)2n-1;
(4)[(-2)4+(-4)2·(-1)7]2m·(53+35)。
一、教材分析
同底數(shù)冪的乘法這節(jié)課要求學(xué)生推導(dǎo)出同底數(shù)冪的乘法的運算性質(zhì),理解和掌握性質(zhì)的特點,熟練運用運算性質(zhì)解決問題.在教學(xué)中改變以往單純的模仿與記憶的模式,體現(xiàn)以學(xué)生為主體,引導(dǎo)學(xué)生動手實踐,自主探索與合作交流的教學(xué)理念.通過練習(xí)形成良好的應(yīng)用意識.
同底數(shù)冪的乘法是在學(xué)習(xí)了有理數(shù)的乘方和整式的加減之后,為了學(xué)習(xí)整式的乘法而學(xué)習(xí)的關(guān)于冪的一個基本性質(zhì),又是冪的三個性質(zhì)中最基本的一個性質(zhì),學(xué)好了同底數(shù)冪的乘法,對其他兩個性質(zhì)以及整式乘法和除法的學(xué)習(xí)能形成正遷移.
因此,同底數(shù)冪的乘法性質(zhì)既是有理數(shù)冪的乘法的推廣, 又是整式乘法和除法的學(xué)習(xí)的重要基礎(chǔ),在本章中具有舉足輕重的地位和作用.
二、教學(xué)目標
(一),知識技能
1.理解同知識技能底數(shù)冪的乘法法則
2.運用同底數(shù)冪的乘法法則解決一些實際問題
(二),能力訓(xùn)練
1.在進一步體會冪的意義時,發(fā)展推理能力和有條理的表達能力
2.通過"同底數(shù)冪的乘法法則"的推導(dǎo)和應(yīng)用,使學(xué)生領(lǐng)會特殊-----一般-----特殊的認知規(guī)律
(三),情感價值
體味科學(xué)的思想方法,接受數(shù)學(xué)情感的熏陶,激發(fā)學(xué)生探究的興趣
教學(xué)重點: 正確理解同底數(shù)冪的乘法法則
教學(xué)難點:正確理解和應(yīng)用同底數(shù)冪的乘法法則
教學(xué)手段:為了使性質(zhì)的推導(dǎo)過程更形象和清晰,所以借助多媒體來進行教學(xué).
三、教學(xué)方法分析
1.教法分析
根據(jù)教學(xué)目標,要讓學(xué)生經(jīng)歷探索性質(zhì)的過程,因此,在性質(zhì)的推導(dǎo)過程,采用讓學(xué)生嘗試的教學(xué)方法,以問題的形式,引導(dǎo)學(xué)生進行思考,探索,再通過交流,討論,發(fā)現(xiàn)性質(zhì),使學(xué)生的學(xué)習(xí)過程成為再發(fā)現(xiàn),再創(chuàng)造的過程,使學(xué)生在學(xué)習(xí)的過程中掌握學(xué)習(xí)與研究的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,從而學(xué)會學(xué)習(xí),學(xué)會思考,學(xué)會合作,學(xué)會創(chuàng)新;
對于推導(dǎo)出的性質(zhì)及其語言敘述,則可以一種較輕松而又富有挑戰(zhàn)性的方式指導(dǎo)他們理解記憶,在教學(xué)方法上采用學(xué)生討論與教師的講授相結(jié)合.而在整個教學(xué)中,分層次地滲透了歸納和演繹的數(shù)學(xué)思想方法,以培養(yǎng)學(xué)生養(yǎng)成良好的思維習(xí)慣.
2.學(xué)法指導(dǎo)
教學(xué)的矛盾主要方面是學(xué)生的學(xué),學(xué)是中心,會學(xué)是目的,因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí).
本節(jié)課主要是教給學(xué)生"動手做,動腦想,多合作,大膽猜,會驗證"
的研討式學(xué)習(xí)方法.這樣做增加了學(xué)生的參與機會,增強了參與意識,教給了學(xué)生獲取知識的途徑和思考問題的方法,使學(xué)生真正成為學(xué)習(xí)的主體.以及通過動手實踐,理解記憶和強化訓(xùn)練的學(xué)法掌握本節(jié)課內(nèi)容.
四、教學(xué)過程
一.創(chuàng)設(shè)情景 提出問題
運用多媒體投影引例,引導(dǎo)學(xué)生觀察由問題而得到式子特點:105×107=
二.探索交流 發(fā)現(xiàn)新知
(一),提出新任務(wù):
思考:an 表示的意義是什么 其中a,n,an分 別叫做什么
問題:1.25表示什么
2.10×10×10×10×10 可以寫成什么形式
思考:1式子103×102的意義是什么
2這個式子中的兩個因式有何特點
3.a3×a2=
過程中注意了解學(xué)生對冪的意義的理解程度,要求學(xué)生說明每一步的理由.
思考:請同學(xué)們觀察下面各題左右兩邊,底數(shù),指數(shù) 有什么關(guān)系
103 ×102 = 10( ) 23 ×22 = 2( ) a3× a2 = a( )
(二),提高任務(wù)難度:
引導(dǎo)學(xué)生觀察計算前后底數(shù)和指數(shù)的關(guān)系,并鼓勵其運用自己的語言加以描述.
猜想:am · an= (當(dāng)m,n都是正整數(shù))
(三),提出挑戰(zhàn):能否用一個比較簡潔的式子概括出你所發(fā)現(xiàn)的規(guī)律
(四),提出更高挑戰(zhàn):要求學(xué)生從冪的意義這個角度加以解釋,說明,驗證它的正確性.
然后要求學(xué)生按步驟獨立思考和探索:
1.比一比:識記運算性質(zhì)
2.回想一下你是用什么辦法記住的 用這個辦法能否持久 你能否提出一個更有建設(shè)性的改進措施
猜想:am · an= (當(dāng)m,n都是正整數(shù))
對運算性質(zhì)的剖析 條件:①乘法 ②同底數(shù)冪
結(jié)果:①底數(shù)不變 ②指數(shù)相加 (目的是為了化解難點)
3.再識記.在理解的基礎(chǔ)上,結(jié)合性質(zhì)的特點和語言 敘述,有目的地提取記憶.
4.提問:"你認為這個性質(zhì)的應(yīng)用,應(yīng)特別注意什么 "
(五),應(yīng)用練習(xí) 促進深化
五、提煉小結(jié) 完善結(jié)構(gòu)
"通過本節(jié)課的學(xué)習(xí),你在知識上有哪些收獲,你學(xué)到了哪些方法 "引導(dǎo)學(xué)生自主總結(jié),組織學(xué)生互相交流各自的收獲與體會,成功與失敗.
六、布置作業(yè) 延伸學(xué)習(xí)
初中數(shù)學(xué)分層教學(xué)的理論與實踐
天山六中裴煥民
一、分層教學(xué)的含義
分層教學(xué)是指教師在學(xué)生知識基礎(chǔ)、智力因素存在明顯差異的情況下,有區(qū)別地設(shè)計教學(xué)環(huán)節(jié)進行教學(xué),遵循因材施教的原則,有針對性地實施對不同類別學(xué)生的學(xué)習(xí)指導(dǎo),不僅根據(jù)學(xué)生的不同選擇不同的教法、布置作業(yè),還因材施“助”、因材施“改”、因材施“教”,使每個學(xué)生都能在原有的基礎(chǔ)上得以發(fā)展,從而達到不同類別的教學(xué)目標的一種教學(xué)方法。
分層教學(xué)是“著眼于與學(xué)生的可持續(xù)性的、良性的發(fā)展”的教育觀念下的一種教學(xué)實施策略。所謂分層教學(xué)(同班、同年級分層次教學(xué))就是教師在教授同一教學(xué)內(nèi)容時,對同一個班內(nèi)不同知識水平和接受能力的優(yōu)、中、差生以相應(yīng)的三個層次的教學(xué)深度和廣度進行合講分練,做到課堂教學(xué)有的放矢,區(qū)別對待,使每個學(xué)生都在自己原來的基礎(chǔ)上學(xué)有所得,思有所進,在不同程度上有所提高,同步發(fā)展。教師的教學(xué)方法應(yīng)從最低點起步,分類指導(dǎo),逐步推進,做到“分合”有序,動靜結(jié)合,并分層設(shè)計練習(xí),分層設(shè)計課堂,分層布置作業(yè),引導(dǎo)學(xué)生全員參與,各得進步。
二、分層教學(xué)必要性分析
1、教學(xué)現(xiàn)狀呼喚分層教學(xué)的實施
義務(wù)教育的實施使小學(xué)畢業(yè)生全部升入初中學(xué)習(xí),這樣,在同一班里,學(xué)生的知識、能力參差不齊。但是,應(yīng)試教育留下的種種弊端抑制了各層次的學(xué)生的學(xué)習(xí)積極性和興趣,整齊劃一的教學(xué)要求,忽視了學(xué)生之間的差異。為了使教育面向全體學(xué)生,減輕部分學(xué)生過重的負擔(dān),使他們在原有的基礎(chǔ)上有所提高,全面提高教學(xué)質(zhì)量,又要使有特長的學(xué)生得到更進一步的發(fā)展。因此必須實施因材施教,根據(jù)不同的學(xué)生的具體情況,確立不同的教學(xué)目標,采取不同的教學(xué)方法,使其個性得到充分發(fā)展,為社會培養(yǎng)各種層次的有用之人。
2、新課程改革呼喚分層教學(xué)的實施
數(shù)學(xué)課程改革的核心是課程的實施,而教學(xué)是課程實施的基本途徑。課程改革歸根到底是要轉(zhuǎn)變教師的傳統(tǒng)教學(xué)觀念:包括教學(xué)方式的轉(zhuǎn)變——從“教”到
“引”;知識技能掌握理念的轉(zhuǎn)變——從“滿堂灌”、“書山題?!钡健霸谟H身經(jīng)歷中體會、理解、掌握知識技能”,強調(diào)自我的情感體驗;教材觀的轉(zhuǎn)變——從“教教材”到“用教材”,教材變成我們引導(dǎo)學(xué)生探究知識的工具之一;評價機制的轉(zhuǎn)變——從“唯分數(shù)論”到“適合學(xué)生自身特點的發(fā)展”,這是實施分層教學(xué)的原動力,但也是現(xiàn)今新課程改革的一個難點。
在新課改中實施分層教學(xué)法的目的是逐步樹立學(xué)困生學(xué)習(xí)的信心,激發(fā)中等生的學(xué)習(xí)潛力,擴大優(yōu)生的學(xué)習(xí)面。為了適應(yīng)當(dāng)前素質(zhì)教育的需要,我們要采用針對性的矯正和幫助,進行分層教學(xué),分類指導(dǎo),及時反饋,從中探索出一條教學(xué)改革的新路子。
3、學(xué)生個體差異的客觀存在
心理學(xué)的研究結(jié)果表明:學(xué)生的學(xué)習(xí)能力差異是存在的,特別是學(xué)生在數(shù)學(xué)學(xué)習(xí)能力方面存在著較大的差異這已是一個不爭的事實。造成差異的原因有很多,學(xué)生的先天遺傳因素及環(huán)境、教育條件都有所不同,還有社會因素(即環(huán)境、教育條件、科學(xué)訓(xùn)練),這些原因是對學(xué)生學(xué)習(xí)能力的形成起著決定性作用,所以學(xué)生所表現(xiàn)出的數(shù)學(xué)能力有明顯差異也是正常的。
學(xué)生作為一個群體,存在著個體差異
(1)智力差異。每個學(xué)生因為遺傳基因的不同,智力的差異是不可避免的。有的人聰明;有的人愚鈍,有的人形象思維強;有的邏輯思維強;有的人記憶力超人,但推理能力較差;有的人記憶力較差,卻推理能力過人。
(2)學(xué)習(xí)基礎(chǔ)差異。不同的學(xué)生在小學(xué)的數(shù)學(xué)狀況不一樣:有的學(xué)生數(shù)學(xué)十分優(yōu)秀,有的學(xué)生數(shù)學(xué)學(xué)習(xí)基本還沒入門,兩極分化相當(dāng)嚴重。
(3)學(xué)習(xí)品質(zhì)差異。有的學(xué)生學(xué)習(xí)數(shù)學(xué)十分認真,有一套自己的數(shù)學(xué)學(xué)習(xí)方法,學(xué)得輕松愉快;而有的學(xué)生因為沒有入門,數(shù)學(xué)學(xué)得十分艱難,部分學(xué)生甚至對數(shù)學(xué)學(xué)習(xí)喪失了信心。
4、分層次教學(xué)符合因材施教的原則
目前我國大部分省市的數(shù)學(xué)教學(xué)采用的是統(tǒng)一教材、統(tǒng)一課時、統(tǒng)一教參,在學(xué)生學(xué)習(xí)能力存在差異的情況下,在教學(xué)過程中往往容易產(chǎn)全“顧中間、丟兩頭”。如不因材施教,就使部分學(xué)生就成了陪讀、陪考。數(shù)學(xué)能力強的學(xué)生潛能得不到充分發(fā)揮,能力稍差的學(xué)生就可能變成了后進生。有研究結(jié)果表明:教師、
家庭、社會、學(xué)生、學(xué)校等方面的因素都有可能是形成后進生的原因,其中有50%的原因是來自教師在教學(xué)中的失誤。我們的基礎(chǔ)教育既要注意確保學(xué)生的共性需求,又要顧及學(xué)生的個性發(fā)展,所以進行分層教育確有必要。
5、分層次教學(xué)能夠有效推動教學(xué)過程的展開
按照教育家達尼洛夫關(guān)于教學(xué)過程的動力理論之說,認為只有學(xué)生學(xué)習(xí)的可能性與對他們的要求是一致的,才可能推動教學(xué)過程的展開,從而加快學(xué)習(xí)成績的提高,而這兩者的統(tǒng)一關(guān)系若被破壞,就會造成學(xué)業(yè)的不良后果。學(xué)生的學(xué)習(xí)可能是由他們生理和心理的一般發(fā)展水平與對某項學(xué)習(xí)的具體準備狀態(tài)所決定的,學(xué)生學(xué)習(xí)可能性的構(gòu)成因素中既有相對穩(wěn)定的因素,又有易變的因素。相對穩(wěn)定的因素,決定了學(xué)生在一段時間內(nèi)可能達到的學(xué)習(xí)水平的范圍,決定了學(xué)業(yè)不良學(xué)生要取得學(xué)業(yè)進步只能是一個漸進的過程;易變的因素,使學(xué)生能在:一定的主客觀條件下提高或降低自己的實際可能性水平,從而促進或阻礙學(xué)習(xí)可能性與教學(xué)要求之間矛盾的轉(zhuǎn)化,加快學(xué)習(xí)成績提高或降低的速度。由此可見,分層次教學(xué)是著眼于協(xié)調(diào)教學(xué)要求與學(xué)生學(xué)習(xí)可能性的關(guān)系的一種極好的手段,使它們之間能相適應(yīng),從而推動教學(xué)過程的展開。
三、分層教學(xué)研究的目的意義
捷克教育家夸美紐斯在十七世紀提出來的班級授課制以其大大提高教學(xué)效率、加強學(xué)校工作的計劃性和實際社會效益風(fēng)行了三百多年后,其固有的不利于學(xué)生創(chuàng)造能力的培養(yǎng)和因材施教等種種弊端與社會發(fā)展對教育的要求的矛盾越來越尖銳起來。隨著科學(xué)技術(shù)的發(fā)展,社會日益進步,教育資源和教育需求的增長和變化,班級授課制在我國做出輝煌的貢獻后逐步顯現(xiàn)出其先天的嚴重不足。教師在班級授課制下對能力強的學(xué)生“吃不飽”,能力欠佳的學(xué)生“吃不消”普遍感到力不從心。分層教學(xué)在這種情況下應(yīng)運而生,成為優(yōu)化單一班級授課制的有利途徑。
1.有利于所有學(xué)生的提高:分層教學(xué)法的實施,避免了部分學(xué)生在課堂上完成作業(yè)后無所事事,同時,所有學(xué)生都體驗到學(xué)有所成,增強了學(xué)習(xí)信心。
2.有利于課堂效率的提高:首先,教師事先針對各層學(xué)生設(shè)計了不同的教學(xué)目標與練習(xí),使得處于不同層的學(xué)生都能“摘到桃子”,獲得成功的喜悅,這極大地優(yōu)化了教師與學(xué)生的關(guān)系,從而提高師生合作、交流的效率;其次,教師在
備課時事先估計了在各層中可能出現(xiàn)的問題,并做了充分的準備,使得實際施教更有的放矢、目標明確、針對性強,增大了課堂教學(xué)的容量??傊ㄟ^這一教學(xué)法,有利于提高課堂教學(xué)的'質(zhì)量和效率。
3.有利于教師全面能力的提升:通過有效地組織好對各層學(xué)生的教學(xué),靈活地安排不同的層次策略,極大地鍛煉了教師的組織調(diào)控與隨機應(yīng)變能力。分層教學(xué)本身引出的思考和學(xué)生在分層教學(xué)中提出來的挑戰(zhàn)都有利于教師能力的全面提升。
四、分層教學(xué)的理論基礎(chǔ)
1、掌握學(xué)習(xí)理論
布魯姆提出的“掌握學(xué)習(xí)理論”主張:“給學(xué)生足夠的學(xué)習(xí)時間,同時使他們獲得科學(xué)的學(xué)習(xí)方法,通過他們自己的努力,應(yīng)該都可以掌握學(xué)習(xí)內(nèi)容”?!安煌瑢W(xué)生需要用不同的方法去教,不同學(xué)生對不同的教學(xué)內(nèi)容能持久地集中注意力”。為了實現(xiàn)這個目標,就應(yīng)該采取分層教學(xué)的方法。
2、教學(xué)最優(yōu)化理論
巴班斯基的“教學(xué)最優(yōu)化理論”的核心是:教學(xué)過程的最優(yōu)化是選擇一種能使教師和學(xué)生在花費最少的必要時間和精力的情況下獲得最好的教學(xué)效果的教學(xué)方案并加以實施。分層教學(xué)是實現(xiàn)這一目標的有效方式之一。
3、新課標的基本理念
《數(shù)學(xué)課程標準》提出了一種全新的數(shù)學(xué)課程理念:“人人學(xué)有價值的數(shù)學(xué);人人都能獲得必需的數(shù)學(xué);不同的人在數(shù)學(xué)上得到不同的發(fā)展”。面向全體學(xué)生,體現(xiàn)了義務(wù)教育的基礎(chǔ)性、普及性和發(fā)展性。不僅為數(shù)學(xué)教學(xué)內(nèi)容的設(shè)定指出方向,而且考慮到學(xué)生的可持續(xù)發(fā)展對數(shù)學(xué)的需求,并為學(xué)生學(xué)習(xí)數(shù)學(xué)可能產(chǎn)生的差異性留有充分的余地。
五、分層教學(xué)實施的指導(dǎo)思想及原則
首先,分層次教學(xué)的主體是班級教學(xué)為主,按層次教學(xué)為輔,層次分得好壞直接影響到“分層次教學(xué)”的成功與否。其指導(dǎo)思想是變傳統(tǒng)的應(yīng)試教育為素質(zhì)教育,是成績差異的分層,而不是人格的分層。為了不給差生增加心理負擔(dān),必須做好分層前的思想工作,了解學(xué)生的心理特點,講情道理:學(xué)習(xí)成績的差異是客觀存在的,分層次教學(xué)的目的不是人為地制造等級,而是采用不同的方法幫助
他們提高學(xué)習(xí)成績,讓不同成績的學(xué)生最大限度地發(fā)揮他們的潛力,以逐步縮小差距,達到班級整體優(yōu)化。
在對學(xué)生進行分層要堅持尊重學(xué)生,師生磋商,動態(tài)分層的原則。應(yīng)該向?qū)W生宣布分層方案的設(shè)計,講清分層的目的和意義,以統(tǒng)一師生認識;指導(dǎo)每位學(xué)生實事求是地估計自己,通過學(xué)生自我評估,完全由學(xué)生自己自愿選擇適應(yīng)自己的層次;最后,教師根據(jù)學(xué)生自愿選擇的情況進行合理性分析,若有必要,在征得學(xué)生同意的基礎(chǔ)上作個別調(diào)整之后,公布分層結(jié)果。這樣使部分學(xué)生既分到了合適的層次上,又保留了“臉面”,自尊心也不至于受到傷害,也提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
其次,在分層教學(xué)中應(yīng)注意下列原則的使用:
①水平相近原則:在分層時應(yīng)將學(xué)習(xí)狀況相近的學(xué)生歸為“同一層”;
②差別模糊原則:分層是動態(tài)的、可變的,有進步的可以“升級”,退步的應(yīng)“轉(zhuǎn)級”,且分層結(jié)果不予公布;
③感受成功原則:在制定各層次教學(xué)目標、方法、練習(xí)、作業(yè)時,應(yīng)使學(xué)生跳一跳,才可摘到蘋果為宜,在分層中感受到成功的喜悅;
④零整分合原則:教學(xué)內(nèi)容的合與分,對學(xué)生的“放”與“扶”,以及課外的分層輔導(dǎo)都應(yīng)遵守這個原則;
⑤調(diào)節(jié)控制原則:由于各層次學(xué)生要求不一,因此在課堂上以學(xué)、議為主,教師要善于激趣、指導(dǎo)、精講、引思,調(diào)節(jié)并控制止好各層次學(xué)生的學(xué)習(xí),做好分類指導(dǎo);
⑥積極激勵原則:對各層次學(xué)生的評價,以縱向性為主。教師通過觀察、反饋信息,及時表揚激勵,對進步大的學(xué)生及時調(diào)到高一層次,相對落后的同意轉(zhuǎn)層。從而促進各層學(xué)生學(xué)習(xí)的積極性,使所有學(xué)生隨時都處于最佳的學(xué)習(xí)狀態(tài)。
六、實施分層教學(xué)的策略與措施
(一)分層建組
把學(xué)生分層編組是實施分層教學(xué)、分類指導(dǎo)的基礎(chǔ)。學(xué)生的分類應(yīng)遵循“多維性原則、自愿性原則和動態(tài)性原則”,教師通過對全班學(xué)生平時的數(shù)學(xué)學(xué)習(xí)的智能,技能、心理、成績、在校表現(xiàn)、家庭環(huán)境等,并對所獲得的數(shù)據(jù)資料進行綜合分析,分類歸檔。在此基礎(chǔ)上,將學(xué)生分成好、中、差層次的學(xué)習(xí)小組,讓
一、課題引入
為了讓學(xué)生更好地理解正數(shù)與負數(shù)的概念,作為教師有必要了解數(shù)系的發(fā)展.從數(shù)系的發(fā)展歷程來看,微積分的基礎(chǔ)是實數(shù)理論,實數(shù)的基礎(chǔ)是有理數(shù),而有理數(shù)的基礎(chǔ)則是自然數(shù).自然數(shù)為數(shù)學(xué)結(jié)構(gòu)提供了堅實的基礎(chǔ).
對于“數(shù)的發(fā)展”(也即“數(shù)的擴充”),有著兩種不同的認知體系.一是數(shù)的自然擴充過程,如圖1所示,即數(shù)系發(fā)展的自然的、歷史的體系,它反映了人類對數(shù)的認識的歷史發(fā)展進程;另一是數(shù)的邏輯擴充過程,如圖2所示,即數(shù)系發(fā)展所經(jīng)歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數(shù)學(xué)家構(gòu)造的一種邏輯體系,其中綜合反映了現(xiàn)代數(shù)學(xué)中許多思想方法.
二、課題研究
在實際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數(shù)量.這些數(shù)量不僅與5、5000等數(shù)量有關(guān),而且還含有上升與下降、收入與支出等實際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實際意義是不同的.
為了準確表達諸如此類的一些具有相反意義的量,僅用小學(xué)學(xué)過的正整數(shù)、正分數(shù)、零,是不夠的.如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的.收入與支出是“意義相反”的兩回事,是不能用同一個數(shù)來表達的.因此,為了準確表達支出5000元,就有必要引入了一種新數(shù)—負數(shù).
我們把所學(xué)過的大于零的數(shù),都稱為正數(shù);而且還可以在正數(shù)的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數(shù),讀作“正5”.
在正數(shù)的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構(gòu)成的'數(shù)統(tǒng)稱為負數(shù).“-5”讀作“負5”,“-5000”讀作“負5000”.
于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數(shù)量就有了不同的表達方式.
利用正數(shù)與負數(shù)可以準確地表達或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機器零件的實際尺寸比設(shè)計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機器零件的實際尺寸比設(shè)計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊贏了乙隊2個球,那么可以把甲隊的凈勝球數(shù)記作“+2”,把乙隊的凈勝球數(shù)記作“-2”.
借助實際例子能夠讓學(xué)生較好地理解為什么要引入負數(shù),認識到負數(shù)是為了有效表達與實際生活相關(guān)的一些數(shù)量而引入的一種新數(shù),而不是人為地“硬造”出來的一種“新數(shù)”.
三、鞏固練習(xí)
例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺空調(diào),又該怎樣記錄這筆支出呢?
思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數(shù)或負數(shù)來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.
特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數(shù)量,都用正數(shù)來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數(shù)量則用負數(shù)來表示.
再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.
例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當(dāng)天的收盤價與開盤價的漲跌情況如下表:單位:元
日期周二周三周四周五
開盤+0.16+0.25+0.78+2.12
收盤-0.23-1.32-0.67-0.65
當(dāng)日收盤價
試在表中填寫周二到周五該股票的收盤價.
思路分析:以周二為例,表中數(shù)據(jù)“+0.16”所表示的實際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數(shù)據(jù)“-0.23”則表示“周二該股票收盤時的收盤價比當(dāng)天的開盤價降低了0.23元”.
因此,這五天該股票的開盤價與收盤價分別應(yīng)該按如下的方式進行計算:
周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球隊以主客場的形式進行雙循環(huán)比賽,每兩隊之間都比賽兩場,下表是這三支球隊的比賽成績,其中左欄表示主隊,上行表示客隊,比分中前后兩數(shù)分別是主客隊的進球數(shù),例如3∶2表示主隊進3球客隊進2球.
初中數(shù)學(xué)分層次教學(xué)案例
【案例主題:】學(xué)生參與教學(xué),體現(xiàn)了現(xiàn)代教學(xué)理念:活動、合作、自由、民主、創(chuàng)新。
【背景:】我在進行數(shù)學(xué)七年級上冊圖形的認識的應(yīng)用教學(xué)時,處理定理時,隨著教學(xué)過程的深入,很有感想:??
例題:課本p123證明兩個角之間的關(guān)系,
請同學(xué)們總結(jié)一下他們可能出現(xiàn)的情況。
【活動過程】師:誰能總結(jié)一下判定兩個角比較大小的方法?(學(xué)生都在緊張的思考中)(突然間,我發(fā)現(xiàn)一名平時學(xué)習(xí)較困難的學(xué)生閆家銜這次第一個舉起了手,很驚奇,便馬上讓他發(fā)言了。也有了我思想上的一次飛躍。)
生:我認為前面,度量,而剛才第一條,第二條的疊合法。(這時,教室里鴉雀無聲,個別同學(xué)在譏笑,這位學(xué)生頓時有些難堪,想坐下去,我趕緊制止。)
師:很好!那你準備應(yīng)該怎么做呢?生:嗯,(一下子來勁了):接著這位同學(xué)上黑板畫了圖,寫出自己度量的方法和自己的想法。
師:剛才閆家銜同學(xué)真的不錯,不但提出了新的方法,而且還給出了說理,我和全班同學(xué)都為你今天的表現(xiàn)感到非常高興(教室里響起一片掌聲)。要有勇氣展示自己,你今天的表現(xiàn)就非常非常地出色,你今后的表現(xiàn)一定會更出色。好,下面我就讓我們一同來總結(jié)一下菱形的證明方法。
在師生的共同研討下得出了這些方法。
師:今天的課程內(nèi)容還有一項,那就是請閆家銜同學(xué)談?wù)勥@堂課的感想。
生:??以前我不敢發(fā)言,我怕說的不對會被同學(xué)們笑話,而今天的他的方法恰好是我前幾天才預(yù)習(xí)過的,所以一下子??我今天才發(fā)現(xiàn)不是這樣??我今后還會努力發(fā)言的??
【理念反思】:從這一個學(xué)生的舉手發(fā)言到說得頭頭是道的“意外”中,我明白了:學(xué)生需要一個能充分展示自我的自由空間,作為老師,我們需要給學(xué)生一個自由的民主的氛圍,能充分培養(yǎng)學(xué)生的自信,使“學(xué)困生”也能產(chǎn)生發(fā)言的欲望,也能對問題暢所欲言,教師還應(yīng)能及時捕捉到這一閃光點,給每一位學(xué)生都有展示的機會。也就是說要使學(xué)生全部積極參與教學(xué),因為它集中體現(xiàn)了現(xiàn)代課程理念:活動、合作、自由、民主、創(chuàng)新。
1、活動、合作是現(xiàn)代課程中的新的理念,只有參與,才能合作創(chuàng)新。
2、民主是現(xiàn)代課程中的重要理念。民主最直接的體現(xiàn)是在課程實施中學(xué)生能夠平等地參與。沒有主動參與,只有被動接受,就沒有民主可言。相反,如果沒有民主,學(xué)生的參與
就不是主動性參與,而是被動的、消極的參與。
3、在提問時,應(yīng)設(shè)計開放性的問題,如:“請你幫助設(shè)計一下,有幾種方案等問題?這樣才沒有限制學(xué)生的思維,給學(xué)生創(chuàng)設(shè)一個自由的空間,學(xué)生在這個空間中可以按自己的方式展開想象,才能暢所欲言。
4、在課堂上,老師應(yīng)不只關(guān)注“優(yōu)等生”,而應(yīng)平等地對待每一個學(xué)生,讓學(xué)困生”和“學(xué)優(yōu)生”同時享有尊嚴和擁有一份自信。特別是發(fā)現(xiàn)到一個學(xué)困生在舉了手時,應(yīng)及時給“學(xué)困生”展示的機會,讓他們發(fā)言,學(xué)生在發(fā)言中,雖然有時不能把問題完全解決,老師也要充分的肯定這個學(xué)生的成績和能夠大膽發(fā)言的勇氣。
幼兒園教案《初中數(shù)學(xué)教案》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專門為給您提供幼兒園教案而創(chuàng)建的網(wǎng)站。同時,yjs21.com還為您精選準備了初中數(shù)學(xué)教案專題,希望您能喜歡!
相關(guān)推薦
為了促進學(xué)生掌握上課知識點,老師需要提前準備教案,沒有寫的老師就需要抓緊完成了。?對學(xué)生反應(yīng)的了解可以幫助教師提高課堂效率。下面我們?yōu)槟噬稀俺踔袛?shù)學(xué)教學(xué)課件教案”相關(guān)主題內(nèi)容,敬請瀏覽本文內(nèi)容!...
老師就如春蠶吐絲般為學(xué)生奉獻自己,對于新手教師,提前編寫教案是很重要的。教案是教師教學(xué)的一大助推工具。一篇好的教案有哪些特點?幼兒教師教育網(wǎng)推薦你不妨讀一下初中數(shù)學(xué)教案,歡迎你閱讀與收藏。...
新學(xué)期在不知不覺之中悄然而至,教學(xué)計劃能夠使新學(xué)期的教學(xué)更有目標明確,是否在為寫學(xué)科教學(xué)計劃而犯愁呢?以下內(nèi)容“初中數(shù)學(xué)老師教學(xué)計劃”為編輯收集整理,相信你能找到對自己有用的內(nèi)容!...
【活動目標】 1、了解生活中雙數(shù)的存在及雙數(shù)在生活中的應(yīng)用。 2、說出成雙成對的物品,體驗游戲的快樂。 【活動準備】 4件衣服,每件衣服有4粒能系的扣子。 【活動過程】 一、了解雙數(shù)的另一種表達方法。...
博學(xué)、耐心、寬容,是教師的基本素質(zhì),教案要求邏輯思路清晰,符合認知規(guī)律,教案規(guī)范的格式有哪些?也許以下內(nèi)容“初中數(shù)學(xué)教學(xué)說課稿”合你需求,希望大家喜歡本文!...
最新更新
熱門欄目