對數(shù)函數(shù)教案。
以下內容“對數(shù)函數(shù)教案”是編輯特意分享給您的。教案課件是我們老師工作的一部分,這就要老師好好去自己教案課件了。教案是完整課堂教學的核心。供你參考,希望能夠幫助到大家!
一、說教材
1、教材的地位和作用
函數(shù)是高中數(shù)學的核心,而對數(shù)函數(shù)是高中階段所要研究的重要的基本初等函數(shù)之一.本節(jié)內容是在學生已經學過指數(shù)函數(shù)、對數(shù)及反函數(shù)的基礎上引入的,因此既是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解.對數(shù)函數(shù)在生產、生活實踐中都有許多應用.本節(jié)課的學習使學生的知識體系更加完整、系統(tǒng),為學生今后進一步學習對數(shù)方程、對數(shù)不等式等提供了必要的基礎知識.
2、教學目標的確定及依據(jù)
根據(jù)教學大綱要求,結合教材,考慮到學生已有的認知結構心理特征,我制定了如下的教學目標:
(1)知識目標:理解對數(shù)函數(shù)的意義;掌握對數(shù)函數(shù)的圖像與性質;初步學會用
對數(shù)函數(shù)的性質解決簡單的問題.
(2)能力目標:滲透類比、數(shù)形結合、分類討論等數(shù)學思想方法,培養(yǎng)學生觀察、
分析、歸納等邏輯思維能力.
(3)情感目標:通過指數(shù)函數(shù)和對數(shù)函數(shù)在圖像與性質上的對比,使學生欣賞數(shù)
學的精確和美妙之處,調動學生學習數(shù)學的積極性.
3、教學重點與難點
重點:對數(shù)函數(shù)的意義、圖像與性質.
難點:對數(shù)函數(shù)性質中對于在與兩種情況函數(shù)值的不同變化.
二、說教法
學生在整個教學過程中始終是認知的主體和發(fā)展的主體,教師作為學生學習的指導者,應充分地調動學生學習的積極性和主動性,有效地滲透數(shù)學思想方法.根據(jù)這樣的原則和所要完成的教學目標,對于本節(jié)課我主要考慮了以下兩個方面:
1、教學方法:
(1)啟發(fā)引導學生實驗、觀察、聯(lián)想、思考、分析、歸納;
(2)采用“從特殊到一般”、“從具體到抽象”的方法;
(3)滲透類比、數(shù)形結合、分類討論等數(shù)學思想方法.
2、教學手段:
計算機多媒體輔助教學.
三、說學法
“授之以魚,不如授之以漁”,方法的掌握,思想的形成,才能使學生受益終身.本節(jié)課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
(1)類比學習:與指數(shù)函數(shù)類比學習對數(shù)函數(shù)的圖像與性質.
(2)探究定向性學習:學生在教師建立的情境下,通過思考、分析、操作、探索,
歸納得出對數(shù)函數(shù)的圖像與性質.
(3)主動合作式學習:學生在歸納得出對數(shù)函數(shù)的圖像與性質時,通過小組討論,
使問題得以圓滿解決.
四、說教程
1、溫故知新
我通過復習細胞分裂問題,由指數(shù)函數(shù)引導學生逐步得到對數(shù)函數(shù)的意義及對數(shù)函數(shù)與指數(shù)函數(shù)的關系:互為反函數(shù).
設計意圖:既復習了指數(shù)函數(shù)和反函數(shù)的有關知識,又與本節(jié)內容有密切關系,
有利于引出新課.為學生理解新知清除了障礙,有意識地培養(yǎng)學生
分析問題的能力.
2、探求新知
在理解對數(shù)函數(shù)的意義的基礎上,研究對數(shù)函數(shù)的圖像與性質.關鍵是抓住對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)的關系,圖像關于直線對稱,從而作出對數(shù)函數(shù)的圖像.由學生自主作出對數(shù)函數(shù)和的圖像后,引導學生填寫所發(fā)表格(該表格一列填有在及兩種情況下的圖像與性質),通過類比學習,小組討論,采用“從特殊到一般”、“從具體到抽象”的方法,歸納總結出的圖像與性質.
在學生得出對數(shù)函數(shù)的圖像和性質后,教師再加以升華,強調“數(shù)形結合”記憶其性質,做到“心中有圖”.另外,對于對數(shù)函數(shù)的性質3和性質4在用多媒體演示時,有意識地用(1)(2)進行分類表示,培養(yǎng)學生的分類意識.
設計意圖:教師建立了一個有助于學生進行獨立探究的情境,學生通過動手操作、
觀察、聯(lián)想、類比、思考、分析、探索,在此過程中,通過小組討論,
協(xié)作構建起新的知識.這充分體現(xiàn)了基于建構主義學習理論的探究定
向性學習和主動合作式學習.
3、課堂研究,鞏固應用
例1主要利用對數(shù)函數(shù)的定義域是來求解.在這個例題中,重點、難點是第三小題的理解.這一小題是課后練習“求函數(shù)(其中)的定義域”這道題目的變形.我覺得讓學生直接解決課后練習有較大困難,因此設計了“求函數(shù)的定義域”這一小題;理解了這個小題,課后練習也就迎刃而解了.而在解題過程中,學生發(fā)現(xiàn)求解不等式是一個難點.我在解決這一難點時,采用了兩種方法:一是啟發(fā)學生將“0”寫成1的對數(shù),并且是寫成,這樣就可以利用對數(shù)函數(shù)的單調性求出不等式的解,最后向學生介紹不等式是一個對數(shù)不等式;二是引導學生觀察對數(shù)函數(shù)的圖像,通過數(shù)形結合來求解不等式.
例2利用對數(shù)函數(shù)的單調性,比較兩個同底對數(shù)值的大?。谶@個例題中,注意第三小題的點撥,要分底數(shù)及兩種情況.
設計意圖:通過這個環(huán)節(jié)學生可以加深對本節(jié)知識的理解和運用,在此過程中充
分體現(xiàn)了數(shù)形結合和分類討論的數(shù)學思想方法.同時為課外研究題的
解決提供了必要條件,為學生今后進一步學習對數(shù)不等式埋下伏筆.
4、課外研究
使學生學會知識的遷移,利用課堂研究中體現(xiàn)的重要的數(shù)形結合和分類討論的數(shù)學思想方法,學生課后完全有能力解決這個問題.
5、課堂小結
引導學生進行知識回顧,使學生對本節(jié)課有一個整體把握.從三方面進行小結:
(1)理解對數(shù)函數(shù)的意義;
(2)掌握對數(shù)函數(shù)的圖像與性質,體會類比、數(shù)形結合的思想方法;
(3)會利用對數(shù)函數(shù)的性質比較兩個同底對數(shù)值的大小,初步學會對數(shù)不等式的
解法,體會分類討論的思想方法.
6、課外作業(yè)
公式無法顯示,完整WORD文檔點擊下載此文件
同一只封建宗法制度的黑手,伸出了兩條繩索,捆住了婦女的脖子,朝著相反的方向緊勒,要把勞動婦女置于死地而后快。祥林嫂當時就處在這種極端悲慘的境地中:
族權迫使她寡而再嫁,夫權又視此為奇恥大辱,使她忍辱含冤,永遠生活在恥辱之中。祥林嫂以后的悲劇,都是由此而引起的。
那么,祥林嫂是如何對待新迫害的呢?
3.高潮:
①祥林嫂為什么又一次來到魯四老爺家?
②有人認為,喪夫失子有偶然性,這種看法對不對?
喪夫失子似乎有偶然性,然而隱藏在偶然性背后的,是那起決定作用的必然性。祥林嫂的丈夫死于舊社會中蔓延著的傳染病傷寒,阿毛死于祥林嫂的貧困、勞碌。(若不是忙著打柴摘茶養(yǎng)蠶,能讓年僅兩三歲的孩子去剝豆嗎?)因此,實質上,是罪惡的政權奪走了祥林嫂的丈夫和兒子的生命,使她陷于嫁而再寡的境地。作者開始把批判的筆觸由封建夫權、族權擴展到封建政權。
按照封建宗法觀念,婦女出嫁從夫,夫死從子,一旦喪夫失子,則連在家庭中生存的權利都被剝奪了。因此,大伯來收屋使祥林嫂走投無路,只好再一次來到魯家。她到魯家后,又遭受了更大的打擊。
③在魯四老爺,人們對待祥林嫂這個嫁而再寡的不幸女人態(tài)度如何?
A.魯四老爺?shù)膽B(tài)度:
魯四老爺站在頑固維護封建宗法制度的立場上,從精神上殘酷地虐殺她。他暗暗地告誡四嬸的那段話,就是置祥林嫂于死地而又不露一絲血痕的軟刀子。(通過四嬸先后喊出三句你放著罷,殺人不見血地葬送了祥林嫂的性命。)
B.人們的態(tài)度:
人們叫她的聲調和先前很不同。
魯迅用他那犀利的筆鋒,從廣闊的領域里揭示了封建社會黑暗的程度。
人們對祥林嫂的態(tài)度,使她感到痛苦與迷惑。她不時地向人們訴說著自己不幸的遭遇,她的精神卻慘遭蹂躪。而柳媽的說鬼又給祥林嫂新的打擊。
C.柳媽說鬼:
④祥林嫂是如何對待這如此沉重的打擊的?其結果如何?
為了爭得做人的權利,為了求得一線生存的希望,她在竭盡全力地反抗著:
她背著沉重的精神包袱,整日勞碌著,以便積夠十二元鷹洋,用捐門檻的方法去擺脫人們在陽世、陰世間給她設下的罪名,她忍受著咬嚙人心的嘲笑和侮辱,在無邊的寂寞和悲哀中,默默干了一年,這是何等堅韌的反抗精神??!
而反抗的結果,出乎柳媽、祥林嫂的預想,這血淋淋的事實深刻地說明了:祥林嫂是無法贖罪的,祥林嫂陷入了求生不得,欲死不能的境地。
4.結局:
當祥林嫂被折磨得像木偶人,喪失了當牛做馬的條件后,魯四老爺就一腳把她踢出門外,使她終于成了只有那眼珠間或一輪,還可以表示她是一個活物的僵尸。即使這樣,她在臨死前,還向我提出了三個問題:
A.一個人死了之后,究竟有沒有魂靈的?
B.那么,也就有地獄了?
C.那么,死掉的一家的人,都能見面的?
這是對魂靈的有無表示疑惑。
她希望人死后有靈魂,因為她想看見自己的兒子;她害怕人死后有靈魂,因為她害怕在陰間被鋸成兩半。這種疑惑是她對自己命運的疑惑,但也正是這種疑惑,這種無法解脫的矛盾,使她在臨死前受到了極大的精神折磨,最后,悲慘地死去。
從祥林嫂一生的悲慘遭遇中,可以清楚地看到,封建的宗法制度正是用政權、族權、神權、夫權這四條繩索把祥林嫂活活地勒死的。
祥林嫂一生的悲慘遭遇,正是舊中國千百萬勞動婦女悲慘遭遇的真實寫照。作者正是通過塑造祥林嫂這一典型人物,對吃人的封建制度和封建禮教進行深刻的揭露和有力地抨擊的。
小結:
祥林嫂是生活在舊中國的一個被踐踏、被愚弄、被迫害、被鄙視的勤勞、善良、質樸、頑強的勞動婦女的典型形象。
總之,祥林嫂的悲劇是一個社會悲劇,造成這一悲劇的根源是封建禮教對中國勞動婦女的摧殘和封建思想對當時中國社會的根深蒂固的統(tǒng)治。
第三課時
本課時重點分析魯四老爺、我和柳媽的形象。
一、檢查作業(yè):
二、分析魯四老爺:
魯四老爺是當時農村中地主階級的代表人物,是資產階級民主革命時期地主階級知識分子的典型形象。他政治上迂腐、保守,頑固地維護舊有的封建制度,反對一切改革與革命。他思想上反動,尊崇理學和孔孟之道。自覺維護封建制度和封建禮教。他是造成祥林嫂悲劇的一個重要人物。
1.作者是通過什么手法來刻畫這個人物的呢?
①間接描寫:
通過魯四老爺?shù)臅筷愒O的描寫,點明了魯四老爺?shù)纳矸郑ǖ刂麟A級、封建理學的衛(wèi)道士),揭露了他的丑惡本質,從而揭示出他成為殺害祥林嫂的劊子手的深刻的階級根源和思想根源。
②直接描寫:
A.行動描寫:
這表現(xiàn)在祥林嫂被搶走的兩件事上:
當婆婆一邊搶人一邊來領工錢時,魯四老爺把祥林嫂一文還沒有的工錢全交給了婆婆。
與此相對照的是對被壓迫的寡婦祥林嫂的冷酷無情。
祥林嫂曾那樣辛勤地為魯家勞動過,可當她遭到惡運時,魯家卻無動于衷,連祥林嫂走沒走、怎么走的,都毫不過問,只是到了正午,四嬸肚子餓了,這才想起了祥林嫂淘米時拿走米和淘籮,于是傾巢出動分頭尋淘籮;連平時擺派頭、端架子的魯四老爺都踱出門外,直到河邊,等看見米和淘籮平平正正的放在岸上,旁邊還有一株菜時,這才放心。這場虛驚,入木三分地揭露了:在封建統(tǒng)治者的眼里,一個勞動婦女的命運都不如一個淘籮、一點米、一株菜,魯四老爺冷酷殘忍的嘴臉躍然紙上。
B.語言描寫:
在祥林嫂的問題上,魯四老爺一共開過六次口,說了百十來個字,卻就把他反動、頑固、虛偽自私、陰險狠毒的性格特征,把他殺害祥林嫂的罪行,揭露得淋漓盡致。
a.祥林嫂被搶前:
b.祥林嫂被搶時:
c.當他為尋淘籮,踱到河邊時:
d.緊接著,午飯之后,衛(wèi)婆子又來時:
e.對四嬸的暗暗告誡:
f.祥林嫂死后:
作為這六次開口背景的是魯四老爺虛偽寒暄后的大罵其新黨,它恰恰深刻地揭示了那六次開口的根源。
三、分析我這一形象:
小說中的我是一個具有進步思想的小資產階級知識分子的形象。我有反封建的思想傾向,憎惡魯四老爺,同情祥林嫂。對祥林嫂提出的魂靈的有無的問題,之所以作了含糊的回答,有其善良的一面;同時也反映了我的軟弱和無能。
在小說的結構上,我又起著線索的作用。祥林嫂一生的悲慘遭遇都是通過我的所見所聞來展現(xiàn)的。我是事件的見證人。
四、分析柳媽:
問:有人認為柳媽是幫助魯四老爺殺害祥林嫂的兇手。你是怎樣來看待這一問題呢?
明確:柳媽和祥林嫂一樣都是舊社會的受害者。雖然她臉上已經打皺,眼睛已經干枯,可是在年節(jié)時還要給地主去幫工,可見,她也是一個受壓迫的勞動婦女。但是,由于她受封建迷信思想和封建禮教的毒害很深,相信天堂、地獄之類邪說和餓死事小,失節(jié)事大的理學信條,所以她對祥林嫂改嫁時頭上留下的傷疤,采取奚落的態(tài)度。至于她講陰司故事給祥林嫂聽,也完全出于善意,主觀愿望還是想為祥林嫂尋求贖罪的辦法,救她跳出苦海,并非要置祥林嫂于死地,只是結果適得其反。
她的主觀愿望和客觀效果的矛盾說明柳媽是以剝削階級統(tǒng)治人民的思想──封建禮教和封建迷信思想為指導,來尋求解救祥林嫂的藥方的,這不但不會產生療效的效果,反而給自己的姐妹造成了難以支持的精神重壓,把祥林嫂推向更恐怖的深淵之中。
教學目標:
1.掌握對數(shù)函數(shù)的性質,能初步運用性質解決問題.
2.運用對數(shù)函數(shù)的圖形和性質.
3.培養(yǎng)學生數(shù)形結合的思想,以及分析推理的能力.
教學重點:
對數(shù)函數(shù)性質的應用.
教學難點:
對數(shù)函數(shù)圖象的變換.
教學過程:
一、問題情境
1.復習對數(shù)函數(shù)的定義及性質.
2.問題:如何解決與對數(shù)函數(shù)的定義、圖象和性質有關的問題?
二、學生活動
1.畫出 、 等函數(shù)的圖象,并與對數(shù)函數(shù) 的圖象進行對比,總結出圖象變換的一般規(guī)律.
2.探求函數(shù)圖象對稱變換的規(guī)律.
三、建構數(shù)學
1.函數(shù) ( )的圖象是由函數(shù) 的圖象
得到;
2.函數(shù) 的圖象與函數(shù) 的圖象關系是 ;
3.函數(shù) 的圖象與函數(shù) 的圖象關系是 .
四、數(shù)學運用
例1 如圖所示曲線是對數(shù)函數(shù)=lgax的圖象,
已知a值取0.2,0.5,1.5,e,則相應于C1,C2,
C3,C4的a的'值依次為 .
例2 分別作出下列函數(shù)的圖象,并與函數(shù)=lg3x的圖象進行比較,找出它們之間的關系
(1)=lg3(x-2);(2)=lg3(x+2);
(3)=lg3x-2;(4)=lg3x+2.
練習:1.將函數(shù)=lgax的圖象沿x軸向右平移2個單位,再向下平移1個單位,所得到函數(shù)圖象的解析式為 .
2.對任意的實數(shù)a(a>0,a≠1),函數(shù)=lga(x-1)+2的圖象所過的定點坐標為 .
3.由函數(shù)= lg3(x+2), =lg3x的圖象與直線=-1,=1所圍成的封閉圖形的面積是 .
例3 分別作出下列函數(shù)的圖象,并與函數(shù)=lg2x的圖象進行比較,找出它們之間的關系
(1) =lg2|x|;(2)=|lg2x|;
(3) =lg2(-x);(4)=-lg2x.
練習 結合函數(shù)=lg2|x|的圖象,完成下列各題:
(1)函數(shù)=lg2|x|的奇偶性為 ;
(2)函數(shù)=lg2|x|的單調增區(qū)間為 ,減區(qū)間為 .
(3)函數(shù)=lg2(x-2)2的單調增區(qū)間為 ,減區(qū)間為 .
(4)函數(shù)=|lg2x-1|的單調增區(qū)間為 ,減區(qū)間為 .
五、要點歸納與方法小結
(1)函數(shù)圖象的變換(平移變換和對稱變換)的規(guī)律;
(2)能畫出較復雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(數(shù)形結合).
六、作業(yè)
1.課本P87-6,8,11.
2.課后探究:試說出函數(shù)=lg2 的圖象與函數(shù)=lg2x圖象的關系.
一、說教材
1、地位和作用
本章學習是在學生完成函數(shù)的第一階段學習(初中)的基礎上,進行第二階段的函數(shù)學習。而對數(shù)函數(shù)作為這一階段的重要的基本初等函數(shù)之一,它是在學生已經學習了指數(shù)函數(shù)及對數(shù)的內容,這為過渡到本節(jié)的學習起著鋪墊作用;"對數(shù)函數(shù)"這節(jié)教材,是在沒學習反函數(shù)的基礎上研究的指數(shù)函數(shù)和對數(shù)函數(shù)的自變量與因變量之間的關系,同時對數(shù)函數(shù)作為常用數(shù)學模型在解決社會生活中的實例有廣泛的應用,本節(jié)課的學習為學生進一步學習、參加生產和實際生活提供必要的基礎知識。
2、教學目標的確定及依據(jù)
依據(jù)新課標和學生獲得知識、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學目標:
(1) 理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖象和性質。
(2) 培養(yǎng)學生自主學習、綜合歸納、數(shù)形結合的能力。
(3) 培養(yǎng)學生用類比方法探索研究數(shù)學問題的素養(yǎng);
(4) 培養(yǎng)學生對待知識的科學態(tài)度、勇于探索和創(chuàng)新的精神。
(5) 在民主、和諧的教學氣氛中,促進師生的情感交流。
3、教學重點、難點及關鍵
重點:對數(shù)函數(shù)的概念、圖象和性質;在教學中只有突出這個重點,才能使教材脈絡分明,才能有利于學生聯(lián)系舊知識,學習新知識。
難點:底數(shù)a對對數(shù)函數(shù)的圖象和性質的影響;
關鍵:對數(shù)函數(shù)與指數(shù)函數(shù)的類比教學
由指數(shù)函數(shù)的圖象過渡到對數(shù)函數(shù)的圖象,通過類比分析達到深刻地了解對數(shù)函數(shù)的圖象及其性質是掌握重點和突破難點的關鍵,在教學中一定要使學生的思考緊緊圍繞圖象,數(shù)形結合,加強直觀教學,使學生能形成以圖象為根本,以性質為主體的知識網絡,同時在例題的講解中,重視加強題組的設計和變形,使教學真正體現(xiàn)出由淺入深,由易到難,由具體到抽象的特點,從而突出重點、突破難點。
二、說教法
教學過程是教師和學生共同參與的過程,啟發(fā)學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數(shù)學思想方法,提高學生素質。根據(jù)這樣的原則和所要完成的教學目標,并為激發(fā)學生的學習興趣,我采用如下的教學方法:
(1)啟發(fā)引導學生思考、分析、實驗、探索、歸納。
(2)采用"從特殊到一般"、"從具體到抽象"的方法。
(3)體現(xiàn)"對比聯(lián)系"、"數(shù)形結合"及"分類討論"的思想方法。
(4)投影儀演示法。
在整個過程中,應以學生看,學生想,學生議,學生練為主體,教師在學生仔細觀察、類比、想象的基礎上通過問題串的形式加以引導點撥,與指數(shù)函數(shù)性質對照,歸納、整理,只有這樣,才能喚起學生對原有知識的回憶,自覺地找到新舊知識的聯(lián)系,使新學知識更牢固,理解更深刻。
三、說學法
教給學生方法比教給學生知識更重要,本節(jié)課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
(1)對照比較學習法:學習對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照。
(2)探究式學習法:學生通過分析、探索,得出對數(shù)函數(shù)的定義。
(3)自主性學習法:通過實驗畫出函數(shù)圖象、觀察圖象自得其性質。
(4)反饋練習法:檢驗知識的應用情況,找出未掌握的內容及其差距。
這樣可發(fā)揮學生的主觀能動性,有利于提高學生的各種能力。
四。說教程
在認真分析教材、教法、學法的基礎上,設計教學過程如下:
(一) 創(chuàng)設問題情景、提出問題
在某細胞分裂過程中,細胞個數(shù)y是分裂次數(shù)x的函數(shù) ,因此,知道x的值(輸入值是分裂次數(shù))就能求出y的值(輸出值為細胞的個數(shù)),這樣就建立了一個細胞個數(shù)和分裂次數(shù)x之間的函數(shù)關系式。
問題一:這是一個怎樣的函數(shù)模型類型呢?
設計意圖:復習指數(shù)函數(shù)(趣祝福 zfw152.com)
問題二:現(xiàn)在我們來研究相反的問題,如果知道了細胞個數(shù)y,如何求分裂的次數(shù)x呢?這將會是我們研究的哪類問題?
設計意圖:為了引出對數(shù)函數(shù)
問題三:在關系式 每輸入一個細胞的個數(shù)y的值,是否一定都能得到唯一一個分裂次數(shù)x的值呢?
設計意圖:一是為了更好地理解函數(shù),同時也是為了讓學生更好地理解對數(shù)函數(shù)的概念。
(二) 意義建構:
1. 對數(shù)函數(shù)的概念:
同樣,在前面提到的放射性物質,經過的時間x年與物質剩余量y的關系式為 ,我們也可以把它改為對數(shù)式, ,其中x年也可以看作物質剩余量y的函數(shù),()可見這樣的問題在現(xiàn)實生活中還是不少的。
設計意圖:前面的問題情景的底數(shù)為2,而這個問題情景的底數(shù)為0.84,我認為這個情景并不是多余的,其實它暗示了對數(shù)函數(shù)的底數(shù)與指數(shù)函數(shù)的底數(shù)一樣有兩類。
但在習慣上,我們用x表示自變量,用y表示函數(shù)值
問題一:你能把以上兩個函數(shù)表示出來嗎?
問題二:你能得到此類函數(shù)的一般式嗎?(在此體現(xiàn)了由特殊到一般的數(shù)學思想)
問題三:在 中,a有什么限制條件嗎?請結合指數(shù)式給以解釋。
問題四:你能根據(jù)指數(shù)函數(shù)的定義給出對數(shù)函數(shù)的定義嗎?
問題五: 與 中的x,y的相同之處是什么?不同之處是什么?
問題六: 與 中的x,y的相同之處是什么?不同之處是什么?
設計意圖:前四個問題是為了引導出對數(shù)函數(shù)的概念,然而,光有前四個問題還是不夠的,學生最容易忽略的或最不理解的是函數(shù)的定義域,所以設計這兩個問題是為了讓學生更好地理解對數(shù)函數(shù)的定義域
2. 對數(shù)函數(shù)的圖象與性質
問題:有了研究指數(shù)函數(shù)的經歷,你覺得下面該學習什么內容了?
(提示學生進行類比學習)
合作探究1;借助于計算器在同一直角坐標系中畫出下列兩組函數(shù)的圖象,并觀察各組函數(shù)的圖象,探求他們之間的關系。
(1)
(2)
合作探究2:當 函數(shù) 與 的圖象之間有什么關系?(在這兒體現(xiàn)"從特殊到一般"、"從具體到抽象"的方法)
合作探究3:分析你所畫的兩組函數(shù)的圖象,對照指數(shù)函數(shù)的性質,總結歸納對數(shù)函數(shù)的性質。
(學生討論并交流各自的發(fā)現(xiàn)成果,教師結合學生的交流,適時歸納總結,并板書對數(shù)函數(shù)的性質)
問題1:對數(shù)函數(shù) ( )是否具有奇偶性,為什么?
問題2:對數(shù)函數(shù) ( ),當 時,x取何值,y 0,x取何值,y ,當 呢?
問題3:對數(shù)式 的值的符號與a,b的取值之間有何關系?請用一句簡潔的話語敘述。
知識拓展:函數(shù) 稱為 的反函數(shù),反之,函數(shù) 也稱為 的反函數(shù)。一般地,如果函數(shù) 存在反函數(shù),那么它的反函數(shù)記作為
(三) 數(shù)學應用
1. 例題
例1:求下列函數(shù)的定義域
(1)
(2) ( )
(該題主要考查對數(shù)函數(shù) 的定義域 這一限制條件根據(jù)函數(shù)的解析式求得不等式,解對應的不等式。同時通過本題也可讓學生總結求函數(shù)的定義域應從哪些方面入手)
例2:利用對數(shù)函數(shù)的性質,比較下列各組數(shù)中兩個數(shù)的大?。?/p>
(1) ,
(2) ,
(3) ,
(4) , ,
(在這兒要求學生通過回顧指數(shù)函數(shù)的有關性質比較大小的步驟和方法,完成前3小題,第四題可通過教師的適當點撥完成解答,最后進行歸納總結比較數(shù)的大小常用的方法)
合作探究4:已知 ,比較m,n的大?。ㄔ擃}不僅運用了對數(shù)函數(shù)的圖象和性質,還培養(yǎng)了學生數(shù)形結合、分類討論等數(shù)學思想。)
本題可以從以下幾方面加以引導點撥
1.本題的難點在哪兒?
2.你希望不等式的兩邊的對數(shù)式變成怎樣的形式,你能否找到它們之間的聯(lián)系
本題也可以從形的角度來思考。
(四) 目標檢測
P69 1,2,3
(五) 課堂小結
由學生小結(對數(shù)函數(shù)的概念,對數(shù)函數(shù)的圖象和性質,利用對數(shù)函數(shù)的性質比較大小的一般方法和步驟,求定義域應從幾方面考慮等)
(六)布置作業(yè) P70 1,2,3
教學目標:
(1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。
(2)注重學生參與,聯(lián)系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣
重點難點:
能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。
教學過程:
一、試一試
1.設矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格中,
AB長x(m)123456789
BC長(m)12
面積y(m2)48
2.x的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當AB的長(x)確定后,矩形的面積(y)也隨之確定,y是x的函數(shù),試寫出這個函數(shù)的關系式,
對于1.,可讓學生根據(jù)表中給出的AB的長,填出相應的BC的長和面積,然后引導學生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對前面提出的問題的解答能作出什么猜想?讓學生思意見,達成共識:當AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。
對于2,可讓學生分組討論、交流,然后意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0
尊敬的各位專家、評委:
上午好!
今天我說課的課題是人教A版必修1第二章第二節(jié)《對數(shù)函數(shù)》。
我嘗試利用新課標的理念來指導教學,對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
地位和作用
本章學習是在學生完成函數(shù)的第一階段學習(初中)的基礎上,進行第二階段的函數(shù)學習。而對數(shù)函數(shù)作為這一階段的重要的基本初等函數(shù)之一,它是在學生已經學習了指數(shù)函數(shù)及對數(shù)的內容,這為過渡到本節(jié)的學習起著鋪墊作用?!皩?shù)函數(shù)”這節(jié)教材,是在沒有學習反函數(shù)的基礎上研究的指數(shù)函數(shù)和對數(shù)函數(shù)的自變量和因變量之間的關系。同時對數(shù)函數(shù)作為常用數(shù)學模型在解決社會生活中的實例有著廣泛的應用,本節(jié)課的學習為學生進一步學習,參加生產和實際生活提供必要的基礎知識。
二、目標分析
(一)、教學目標
根據(jù)《對數(shù)函數(shù)》在教材內容中的地位與作用,結合學情分析,本節(jié)課教學應實現(xiàn)如下的教學目標:
1、知識與技能
(1)、進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型;
(2)、理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖像和性質;
(3)、由實際問題出發(fā),培養(yǎng)學生探索知識和抽象概括知識等方面的能力。
2、過程與方法
引導學生觀察,探尋變量和變量的對應關系,通過歸納、抽象、概括,自主建構對數(shù)函數(shù)的概念;體驗結合舊知識探索新知識,研究新問題的快樂。
3、情感態(tài)度與價值觀
通過對對數(shù)函數(shù)函數(shù)圖像和性質的探究過程,培養(yǎng)學生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質。在民主、和諧的教學氣氛中,促進師生的情感交流。
(二)教學重點、難點及關鍵
1、重點:對數(shù)函數(shù)的概念、圖像和性質;在教學中只有突出這個重點,才能使教材脈絡分明,才能有利于學生聯(lián)系舊知識,學習新知識。
2、 難點:底數(shù)a對對數(shù)函數(shù)的圖像和性質的影響。
[關鍵]對數(shù)函數(shù)與指數(shù)函數(shù)的類比教學。
由指數(shù)函數(shù)的圖像過渡到對數(shù)函數(shù)的圖像,通過類比分析達到深刻地了解對數(shù)函數(shù)的圖像及其性質是掌握重點和突破難點的關鍵,在教學中一定要使學生的思考緊緊圍繞圖像,數(shù)形結合,加強直觀教學,使學生能形成以圖像為根本,以性質為主體的知識網絡,同時在立體的講解中,重視加強題組的設計和變形,使教學真正體現(xiàn)出由淺入深,由易到難,由具體到抽象的特點,從而突破重點、突破難點。
三、教法、學法分析
(一)、教法
教學過程是教師和學生共同參與的過程,啟發(fā)學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數(shù)學思想方法,提高學生素質。根據(jù)這樣的原則和所要完成的教學目標,并為激發(fā)學生的學習興趣,我采用如下的教學方法:
1、啟發(fā)引導學生思考、分析、實驗、探索、歸納;
2、采用“從特殊到一般”、“從具體到抽象”的方法;
3、體現(xiàn)“對比聯(lián)系”、“數(shù)形結合”及“分類討論”的思想方法;
4、投影儀演示法。
在整個過程中,應以學生看,學生想,學生議,學生練為主體,教師在學生仔細觀察、類比、想象的基礎上通過問題串的形式加以引導點撥,與指數(shù)函數(shù)性質對照,歸納,整理,只有這樣,才能喚起學生對原有知識的回憶,自覺地找到新舊知識的聯(lián)系,使新學知識更牢固,理解更深刻。
(二)、學法
教給學生方法比教給學生知識更重要,本節(jié)課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
1、對照比較學習法:學習對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照;
2、探究式學習法:學生通過分析、探索,得出對數(shù)函數(shù)的定義;
3、自主性學習法:通過實驗畫出函數(shù)圖像、觀察圖像自得其性質;
4、反饋練習法:檢驗知識的應用情況,找出未掌握的內容及其差距。
四、教學過程分析
(一)、教學過程設計
1、創(chuàng)設情境,提出問題。
在某細胞分裂過程中,細胞個數(shù)y是分裂次數(shù)x的函數(shù)y=2x,因此,知道x的值(輸入值是分裂次數(shù))就能求出y的值(輸出值為細胞的個數(shù)),這樣就建立了一個細胞個數(shù)和分裂次數(shù)x之間的函數(shù)關系式。
問題一:這是一個怎樣的函數(shù)模型類型呢?
設計意圖
復習指數(shù)函數(shù)
問題二:現(xiàn)在我們來研究相反的問題,如果知道了細胞的個數(shù)y,如何求分裂的次數(shù)x呢?這將會是我們研究的哪類問題?
設計意圖
為了引出對數(shù)函數(shù)
問題三:在關系式x=log2y每輸入一個細胞的個數(shù)y的值,是否一定都能得到唯一一個分裂次數(shù)x的值呢?
設計意圖
(1)、為了讓學生更好地理解函數(shù);
(2)、為了讓學生更好地理解對數(shù)函數(shù)的概念。
2、引導探究,建構概念。
(1)、對數(shù)函數(shù)的概念:
同樣,在前面提到的發(fā)射性物質,經過的時間x年與物質剩余量y的關系式為y=0.84x,我們也可以把它改成對數(shù)式x=log0.84y,其中x年夜可以看作物質剩余量y的函數(shù),可見這樣的問題在現(xiàn)實生活中還是不少的。
設計意圖
前面的問題情景的底數(shù)為2,而這個問題情景的底數(shù)是0.84,我認為這個情景并不是多余的,其實它暗示了對數(shù)函數(shù)的底數(shù)與指數(shù)函數(shù)的底數(shù)一樣有兩類。
但是在習慣上,我們用x表示自變量,用y表示函數(shù)值。
問題一:你能把以上兩個函數(shù)表示出來嗎?
問題二:你能得到此類函數(shù)的一般式嗎?
設計意圖
體現(xiàn)出了由特殊到一般的數(shù)學思想
問題三:在y=logax中,a有什么限制條件嗎?請結合指數(shù)式給以解釋。
問題四:你能根據(jù)指數(shù)函數(shù)的定義給出對數(shù)函數(shù)的定義嗎?
問題五:x=logay與y=ax中的x,y的相同之處是什么?不同之處是什么?
設計意圖
前四個問題是為了引導出對數(shù)函數(shù)的概念,然而,光有前四個問題還是不夠的,學生最容易忽略或最不容易理解的是函數(shù)的定義域,所以設計這個問題是為了讓學生更好地理解對數(shù)函數(shù)的定義域。
(2)、對數(shù)函數(shù)的圖像與性質
問題:有了研究指數(shù)函數(shù)的經歷,你覺得下面該學習什么內容了?
設計意圖
提示學生進行類比學習
合作探究1:借助計算器在同一直角坐標系中畫出下列兩組函數(shù)的圖像,并觀察各族函數(shù)圖像,探求他們之間的關系。
y=2x;y=log2x y=( )x,y=log x
合作探究2:當a>0,a≠ 1,函數(shù)y=ax與y=logax圖像之間有什么關系?
設計意圖
在這兒體現(xiàn)“從特殊到一般”、“從具體到抽象”的方法。
合作探究3:分析你所畫的兩組函數(shù)的圖像,對照指數(shù)函數(shù)的性質,總結歸納對數(shù)函數(shù)的性質。
設計意圖
學生討論并交流各自的而發(fā)現(xiàn)成果,教師結合學生的交流,適時歸納總結,并板書對數(shù)函數(shù)的性質)。問題1:對數(shù)函數(shù)y=logax( a>0,a≠1,)是否具有奇偶性,為什么?
問題2:對數(shù)函數(shù)y=logax( a>0,a≠1,),當a>1時,x取何值,y>0,x取何值,y問題3:對數(shù)式logab的值的符號與a,b的取值之間有何關系?
知識拓展:函數(shù)y=ax稱為y=logax的反函數(shù),反之,也成立,一般地,如果函數(shù)y=f(x)存在反函數(shù),那么它的反函數(shù)記作y=f-1(x)。
3、自我嘗試,初步應用。
例1:求下列函數(shù)的定義域
y=log0.2(4-x)(該題主要考查對函數(shù)y=logax的定義域(0,+∞)這一限制條件,根據(jù)函數(shù)的解析式求得不等式,解對應的不等式。)
例2:利用對數(shù)函數(shù)的性質,比較下列各組數(shù)中兩個數(shù)的大?。?/p>
(1)、㏒2 3.4,log2 3.8;
(2)、log0.5 1.8,log0.5 2.1;
(3)、log7 5,log6 7
(在這兒要求學生通過回顧指數(shù)函數(shù)的有關性質比較大小的步驟和方法,完成完成前兩題,最后一題可以通過教師的適當點撥完成解答,最后進行歸納總結比較數(shù)的大小常用的方法)
合作探究4:已知logm 4設計意圖該題不僅運用了對數(shù)函數(shù)的圖像和性質,還培養(yǎng)了學生數(shù)形結合、分類討論等數(shù)學思想。4、當堂訓練,鞏固深化。通過學生的主體性參與,使學生深刻體會到本節(jié)課的主要內容和思想方法,從而實現(xiàn)對知識的再次深化。采用課后習題1,2,3.5、小結歸納,回顧反思。小結歸納不僅是對知識的簡單回顧,還要發(fā)揮學生的主體地位,從知識、方法、經驗等方面進行總結。(1)、小結:①對數(shù)函數(shù)的概念②對數(shù)函數(shù)的圖像和性質③利用對數(shù)函數(shù)的性質比較大小的一般方法和步驟,(2)、反思我設計了三個問題①、通過本節(jié)課的學習,你學到了哪些知識?②、通過本節(jié)課的學習,你最大的體驗是什么?③、通過本節(jié)課的學習,你掌握了哪些技能?(二)、作業(yè)設計作業(yè)分為必做題和選做題,必做題是對本節(jié)課學生知識水平的反饋,選做題是對本節(jié)課內容的延伸與連貫,強調學以致用。通過作業(yè)設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生的自主發(fā)展、合作探究的學習氛圍的形成。我設計了以下作業(yè):必做題:課后習題A 1,2,3;選做題:課后習題B 1,2,3;(三)、板書設計板書要基本體現(xiàn)課堂的內容和方法,體現(xiàn)課堂進程,能簡明扼要反映知識結構及其相互關系:能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。五、評價分析學生學習的結果評價固然重要,但是更重要的是學生學習的過程評價。我采用了及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發(fā)展情況,在質疑探究的過程中,評價學生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發(fā)展,通過鞏固練習考查學生對本節(jié)是否有一個完整的集訓,并進行及時的調整和補充。以上就是我對本節(jié)課的理解和設計,敬請各位專家、評委批評指正。謝謝!
我校是一所農村高中學校,學生的基礎比較薄弱,發(fā)散性思維還未能得到充分的開發(fā).因此,一直以來,我的數(shù)學課堂教學的側重點是:運用探究式教學方式,積極調動學生學習的主動性,大力培養(yǎng)學生的開放性思維.
我本次授課的內容是《對數(shù)函數(shù)及其性質》,整個課題按照新課程標準的要求大概需要3個課時來完成,我提交的是第一個課時的教案.
函數(shù)是高中數(shù)學的核心,對數(shù)函數(shù)是函數(shù)的重要分支,對數(shù)函數(shù)的知識在實際生活中有著廣泛的應用.對數(shù)函數(shù)這部分教學內容,蘊含了函數(shù)與方程及轉化的數(shù)學思想和方法,是后續(xù)學習中不可缺少的部分,也是高考的必考內容.因此在第一課時的教學中,如何有效地激發(fā)學生學習對數(shù)函數(shù)的興趣是這節(jié)課的首要任務.為了降低學生學習的難度,我按照新課程標準的要求制定了適合學生實際水平的教學目標,并在教學過程中把重點放在如何準確把握對數(shù)函數(shù)的圖象與特征上.下面從三個方面來說明我的教案設計.
一、教學把握得當
(一)概念引入自然.我首先和學生一起回顧了考古學家是如何估算古遺址的年代,然后讓學生動手計算當碳14的含量P取不同數(shù)值時相對應的生物死亡年數(shù)t,最后再引導學生共同觀察t與p之間的關系,從而自然而然的引入概念.
(二)透徹講解定義.在引入對數(shù)函數(shù)的概念后,許多學生可能未能及時地意識到它只是一個形式定義,因此我通過材料1來幫助學生消化與掌握概念.
(三)堅持讓學生自己動手實驗.一方面學生已經掌握了畫圖的一般方法,另一方面通過讓學生自己畫圖,使得他們對圖象有豐富的感性認識,印象更加深刻.這樣處理,體現(xiàn)了以學生為主體,教師為主導的教學方式.
(四)巧妙地突破難點.我采取把學生分成若干個小組的形式,由他們進行小組合作討論、探究、相互補充的方法得出對數(shù)函數(shù)的性質.這樣不但激發(fā)了學生學習新知識的興趣,也提高了學生分析問題的能力以及團隊合作的精神,同時也加深了他們對圖象的認識.
另外,學生討論完畢后,我先讓一個小組選派代表上講臺跟全班同學交流他們所得到對數(shù)函數(shù)的一般圖象和性質,然后再請其它小組選派代表提出補充意見,再由老師進行歸納、總結.這樣做不但使學生愉快地接受了新知識、活躍了課堂氣氛,而且突出雙邊活動,開啟了學生的思維,也符合新課標的教學理念.
(五)靈活處理例題與練習題.我是通過兩則材料(材料2、4)來加深學生對對數(shù)函數(shù)性質的理解與運用.材料2是作為例題來體現(xiàn)的,目的是讓學生利用對數(shù)函數(shù)的單調性來解決,使學生學會運用數(shù)形結合的思想來解決問題.其中材料2的第1、2小題是以具體數(shù)字為底數(shù)的對數(shù)值大小的比較,第3小題則是以字母為底數(shù)的對數(shù)值大小的比較,這樣子設計體現(xiàn)了由具體到抽象、由易到難的原則,符合學生的認知水平.
而材料4是以練習題的形式出現(xiàn)的,它是材料2的再現(xiàn),以口答的形式解決,目的主要是加深學生對新知識的理解與應用;至于材料3是為了提高學生如何求對數(shù)型函數(shù)定義域的認識而設置的.
二、充分發(fā)揮多媒體輔助教學的優(yōu)勢.一方面為學生展現(xiàn)自己的才華提供了平臺:(一)鼓勵學生在得到具體的對數(shù)函數(shù)圖象并且經過充分的討論后敢于上臺把觀察得出的結論與其他同學交流;(二)為學生之間互相點評各自解答的練習提供支持.另一方面在講解對數(shù)函數(shù)的性質時,多媒體演示的直觀性、生動性躍然于紙上.這樣不僅激發(fā)了學生學習的興趣,還提高了課堂效率.
三、課堂采取靈活多樣的教學方法.既有教師的講解,又有小組的合作討論,還有師生的互動交流.這樣就充分調動了學生探索新知識的積極性,發(fā)揮了學生的主體作用,營造了和諧的課堂氣氛,做到了寓學于樂.
小結側重于再次講解對數(shù)函數(shù)的圖象特征及其性質,以期加深學生的印象,同時與教學目的相呼應.
數(shù)學這門科學需要觀察和探究,我所設計的這節(jié)課就是讓學生通過動手實驗,然后觀察、探究新知的過程,但由于缺乏經驗,難免有不足之處,真誠地希望得到各位專家學者的批評指正,使我能夠不斷地成長與進步.
一、知識與技能
1.理解對數(shù)函數(shù)的概念.
2.掌握對數(shù)函數(shù)的性質.了解對數(shù)函數(shù)在生產實際中的簡單應用.
二、過程與方法
1.培養(yǎng)學生數(shù)學交流能力和與人合作精神.
2.用聯(lián)系的觀點分析問題.通過對對數(shù)函數(shù)的學習,滲透數(shù)形結合的數(shù)學思想.
三、情感態(tài)度與價值觀
1.通過學習對數(shù)函數(shù)的概念、圖象和性質,使學生體會知識之間的有機聯(lián)系,激發(fā)學生的學習興趣.
2.在教學過程中,通過對數(shù)函數(shù)有關性質的研究,培養(yǎng)觀察、分析、歸納的思維能力以及數(shù)學交流能力,增強學習的積極性,同時培養(yǎng)學生傾聽、接受別人意見的優(yōu)良品質.
教學重點
1.對數(shù)函數(shù)的定義、圖象和性質.
2.對數(shù)函數(shù)性質的初步應用.
教學難點
底數(shù)a對對數(shù)函數(shù)性質的影響.
教具準備
多媒體課件、投影儀、作業(yè)講義.
課時安排
1課時
教學過程
一、創(chuàng)設情景,引入新課
我們已經比較系統(tǒng)地學習了指數(shù)和對數(shù)這兩種運算,請同學們回顧指數(shù)冪運算和對數(shù)運算的定義并說出這兩種運算的本質區(qū)別.
在等式ab=N(a>0,且a≠1,N>0)中,已知底數(shù)a和指數(shù)b求冪值N就是指數(shù)問題,已知底數(shù)a和冪值N求指數(shù)b就是我們前面剛剛學習過的對數(shù)問題,而且無論是求冪值N還是求指數(shù)b,結果都有一個.
在某細胞分裂過程中,細胞個數(shù)y是分裂次數(shù)x的函數(shù),y=2x,因此,若已知細胞的分裂次數(shù)x的值(即輸入值是分裂次數(shù)x),就能求出細胞個數(shù)y的值(即輸出值是細胞個數(shù)y).這樣,就建立起細胞個數(shù)y和分裂次數(shù)x之間的一個函數(shù)關系式.你還記得這個函數(shù)模型的類型嗎?
反過來,在等式y(tǒng)=2x中,如果我們知道了細胞個數(shù)y,求分裂次數(shù)x,這將會是我們研究的哪類問題?
能否根據(jù)等式y(tǒng)=2x把分裂次數(shù)x表示出來?
分裂次數(shù)x可以表示為x=log2y.
在關系式x=log2y中每輸入一個細胞個數(shù)y的值,是否一定都能得到唯一一個分裂次數(shù)x的值?
師:我們通過研究發(fā)現(xiàn):在關系式x=log2y中,把細胞個數(shù)y看作自變量,則每輸入一個y值,都能得到唯一一個分裂次數(shù)x的值.根據(jù)函數(shù)的定義,分裂次數(shù)x就可以看作是細胞個數(shù)y的函數(shù),這樣就得到了我們生活中的又一類與指數(shù)函數(shù)有著密切關系的函數(shù)模型
1.掌握對數(shù)函數(shù)的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用.
(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關系正確描繪對數(shù)函數(shù)的圖象.
(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質去研究認識對數(shù)函數(shù)的性質,初步學會用對數(shù)函數(shù)的性質解決簡單的問題.
2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉化的觀點,通過對數(shù)函數(shù)圖象和性質的學習,滲透數(shù)形結合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力.
3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數(shù)學的積極性.
教學建議
教材分析
(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎上引入的.故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解.對數(shù)函數(shù)的概念,圖象與性質的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎.
(2)本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質.難點是利用指數(shù)函數(shù)的圖象和性質得到對數(shù)函數(shù)的圖象和性質.由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關系和反函數(shù)概念的基礎上,故應成為教學的重點.
(3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應圍繞著這條主線展開.而通過互為反函數(shù)的兩個函數(shù)的關系由已知函數(shù)研究未知函數(shù)的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節(jié)課的難點.
教法建議
(1)對數(shù)函數(shù)在引入時,就應從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
(2)在本節(jié)課中結合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.
各位評委、老師們:大家好!我說課的內容是《對數(shù)函數(shù)及其性質》,《對數(shù)函數(shù)及其性質》是高中數(shù)學必修1第二章第二節(jié)的第2課時的教學內容。下面我從教材分析、教學目標設計、教學重難點、教法學法、教學媒體設計、教學過程設計六個方面對本節(jié)課進行說明:
一、教材的地位、作用及編寫意圖
《對數(shù)函數(shù)》出現(xiàn)在職業(yè)高中數(shù)學第一冊第四章第四節(jié)。函數(shù)是高中數(shù)學的核心,對數(shù)函數(shù)是函數(shù)的重要分支,對數(shù)函數(shù)的知識在數(shù)學和其他許多學科中有著廣泛的應用;學生已經學習了對數(shù)、反函數(shù)以及指數(shù)函數(shù)等內容,這為過渡到本節(jié)的學習起著鋪墊作用;“對數(shù)函數(shù)”這節(jié)教材,指出對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),反映了兩個變量的相互關系,蘊含了函數(shù)與方程的數(shù)學思想與數(shù)學方法,是以后數(shù)學學習中不可缺少的部分,也是高考的必考內容。
二、教學目標設計:
依據(jù)教學大綱和學生獲得知識、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學目標:
1、知識目標:理解指數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖性質及其簡單應用。
2、能力目標:通過教學培養(yǎng)學生觀察問題、分析問題的能力,培養(yǎng)學生嚴謹?shù)乃季S和科學正確的計算能力。
3、情感目標:通過學習,使學生學會認識事物的特殊與一般性之間的關系,構建和諧的課堂氛圍,培養(yǎng)學生勇于提問,善于探索的思維品質。
三、教學重點、難點分析
1、理解函數(shù)的概念、掌握函數(shù)值的求法、函數(shù)定義域的求法是本節(jié)課的重點
2、學生的基礎較好,大多數(shù)學生的動手能力較好,因此可以通過描點,讓學生動手畫圖像,觀察圖像的特征,進一步理解性質,因此我將本課的難點確定為:用數(shù)形結合的方法從具體到一般地探索、概括對數(shù)函數(shù)的性質。
四、說教法、學法
在教學中,我引導學生從實例出發(fā)啟發(fā)指數(shù)函數(shù)的定義,在概念理解上,用步步設問、課堂討論來加深理解。在對數(shù)函數(shù)圖像的畫法上,我借助多媒體,演示作圖過程及圖像變化的動畫過程,從而使學生直接地接受并提高學生的學習興趣和積極性,很好地突破難點和提高教學效率。
說學法“授人與魚,不如授人與漁”。教給學生方法比教給學生知識更重要,本節(jié)課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,進行以下學法指導:
比較法:在初步理解函數(shù)概念的同時,要求學生比較兩種概念,特別加深理解數(shù)學知識之間的相互滲透性。
觀察分析:讓學生要學會觀察問題,分析問題和解決新問題
(2)探究式學習法:學生通過分析、探索、得出對數(shù)函數(shù)的定義。
(3)自主性學習法:通過實驗畫出函數(shù)圖象、觀察圖象自得其性質。
(4)反饋練習法:檢驗知識的應用情況,找出未掌握的內容及其差距。這樣可發(fā)揮學生的主觀能動性,有利于提高學生的各種能力。
五、教學媒體設計:
根據(jù)本節(jié)課的教學任務,和學生學習的需要,教學媒體設計如下:
教師利用多媒體準備的素材①對數(shù)函數(shù)的圖像②例題和習題③與本節(jié)課相關的結論
設計意圖:利用電腦,演示作圖過程及圖像的變化的動態(tài)過程,例題和習題,從而使學生直接的接受并提高學生的學習興趣和積極性,很好地突破難點和提高教學效率,從而增大教學的容量和直觀性、準確性。
六、教學過程的設計:
環(huán)節(jié)一:引入課題,初步感知概念
1.知識回顧
1)學習指數(shù)函數(shù)時,對其性質研究了哪些內容,采取怎樣的方法?
設計意圖:結合指數(shù)函數(shù),讓學生熟知對于函數(shù)性質的研究內容,熟練研究函數(shù)性質的方法——借助圖象研究性質.
2)對數(shù)的定義
設計意圖:為講解對數(shù)函數(shù)時對底數(shù)的限制做準備.
2.教學情景
由學生前面學習的熟悉的細胞有絲分裂問題入手,引入對數(shù)函數(shù)的概念設計意圖:學生通過實際問題,體會函數(shù)
環(huán)節(jié)二:新知探究,構建概念
(一)對數(shù)函數(shù)的概念
1.定義:函數(shù),且叫做對數(shù)函數(shù)(logarithmic function)其中是自變量,函數(shù)的定義域是(0,+∞).
學生思考問題:①為什么對數(shù)函數(shù)概念中規(guī)定②對數(shù)函數(shù)對底數(shù)的限制:
設計意圖:為學習對數(shù)函數(shù)的定義,圖像和性質做鋪墊(
(二)對數(shù)函數(shù)的圖象和性質
教師和學生通過列表,描點畫出函數(shù)1)(2)(3)(4)的圖像,并引導學生類比指數(shù)函數(shù)的圖像和性質觀察,歸納對數(shù)函數(shù)圖像的特征,得出性質。
探索研究:在同一坐標系中畫出下列對數(shù)函數(shù)的圖象;(可用描點法,也可計算器)(1)(2)(3)(4)
環(huán)節(jié)三、典例分析,深化知識、
例1:
解:(略)
設計意圖:本例主要考察學生對對數(shù)函數(shù)定義中底數(shù)和定義域的限制,加深對對數(shù)函數(shù)的理鞏固練習:
環(huán)節(jié)四、歸納小結,強化思想
本節(jié)課主要講解了對數(shù)函數(shù)的定義,圖像和性質及其求定義域,了解通過圖像觀性質。
環(huán)節(jié)五、作業(yè)布置(加深對知識的理解)
作業(yè)分為必做題和選做題,必做題對本節(jié)課學生知識水平的反饋,選做題是對本節(jié)課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業(yè)設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生自主發(fā)展、合作探究的學習氛圍的形成.
以上就是我對本節(jié)課的理解和設計,敬請各位專家、評委批評指正
教學目標
1.準確把握祥林嫂的形象特征,理解造成人物悲劇的社會根源,從而認識舊社會封建禮教的罪惡本質。
2.學習本文綜合運用肖像描寫、動作描寫、語言描寫等塑造人物的方法。
3.體會并理解本文環(huán)境描寫的作用,理解本文倒敘手法的作用。
教學課時:四課時
教學步驟:
第一課時
本課時重點理清小說的情節(jié)結構,了解倒敘的作用。
一、導入新課:
我們在初中曾經學過魯迅的小說《故鄉(xiāng)》、《孔乙己》,其中由活潑可愛而變成麻木愚昧的閏土,站著喝酒而穿長衫的孔乙己,都給我們留下了深刻的印象。今天,我們學習的是魯迅先生又一篇著名的小說《祝福》。
二、介紹背景:
《祝?!穼懹?924年2月7日,是魯迅短篇小說集《彷徨》的第一篇,最初發(fā)表于1924年3月25日出版的上?!稏|方雜志》半月刊第二十一卷第6號上,后收入《魯迅全集》第二卷。
魯迅以極大的熱情歡呼辛亥革命的爆發(fā),可是不久就失望了。他看到辛亥革命以后,帝制政權雖被推翻,但代之而起的卻是地主階級的軍閥官僚的統(tǒng)治,封建社會的基礎并沒有徹底摧毀,中國的廣大人民,尤其是農民,日益貧困化,他們過著饑寒交迫的生活,宗法觀念、封建禮教仍然是壓在人民頭上的精神枷鎖。魯迅在《祝?!防?,深刻地展示了這一時期中國農村的真實面貌。
這一時期的魯迅基本上還是一個革命民主主義者,還不可能用馬克思主義來分析觀察,有時就不免發(fā)生懷疑,感到失望。他把這一時期的小說集叫做《彷徨》,顯然反映了其時自己憂憤的心情。但魯迅畢竟是一個真的猛士,敢于直面慘淡的人生,敢于正視淋漓的鮮血,他決不會畏縮、退避,而是積極奮斗。
《祝?!愤@篇小說通過祥林嫂一生的悲慘遭遇,反映了辛亥革命以后中國的社會矛盾,深刻地揭露了地主階級對勞動婦女的摧殘與迫害,揭示了封建禮教吃人的本質,指出徹底反封建的必要性。
三、研習課文:
1、自讀預習提示,了解小說的教學重點,明確教學目標。
2、理清情節(jié),了解倒敘的作用。
3、速讀課文,概括各段內容。
提問:這篇小說是按時間順序敘述,還是另有安排?
明確:本文在序幕以后就寫出了故事的結局,這是采取了倒敘的手法。
提問:在結構上采取倒敘手法有什么作用?
討論歸納:
設置懸念,使讀者急于追根溯源探求原委;寫祥林嫂在富人們一片祝福中死去,造成了濃重的悲劇氣氛,而且死后引起了魯四老爺?shù)恼鹋沂玖讼榱稚┡c魯四老爺之間的尖銳的矛盾,突出了小說反封建的主題。
第二課時
本課時重點分析祥林嫂形象。
一、回顧小說的三要素:
情節(jié)、人物、環(huán)境(社會環(huán)境、自然環(huán)境)
二、分析祥林嫂形象:
小說的主題是靠人物形象來體現(xiàn)的。這一課的主人公就是祥林嫂。我們只有弄清楚祥林嫂的性格和命運,才能懂得《祝?!返闹黝}。而作為人物形象又是通過故事情節(jié)──人和人之間的聯(lián)系或沖突表現(xiàn)出來的。那么,祥林嫂究竟是一個什么樣的人呢?我們就先來分析一下故事情節(jié)的開端、發(fā)展、高潮、結局,由此來把握祥林嫂的形象,領會《祝?!返闹黝}。
1.開端:
①祥林嫂為什么要到魯家做工?
小說的一開始,祥林嫂就是封建的宗法制度的犧牲品。因為正是父母之命,媒妁之言,迫使她嫁給一個比她小十歲的丈夫,而丈夫又過早地喪了命。祥林嫂因此陷入了嫁而守寡的悲慘的命運之中。按理說,年紀大約二十六七的祥林嫂是完全可以用自己的勞動在農村生活下去的,可是她家里還有嚴厲的婆婆,于是祥林嫂才被迫逃到魯四老爺家里。
②祥林嫂是怎樣對待使她嫁而守寡、備受虐待的宗法制度的呢?
感謝您閱讀“幼兒教師教育網”的《對數(shù)函數(shù)教案精選》一文,希望能解決您找不到幼兒園教案時遇到的問題和疑惑,同時,yjs21.com編輯還為您精選準備了對數(shù)函數(shù)教案專題,希望您能喜歡!
相關推薦
撰寫內容合理,符合課程目的,符合培養(yǎng)目標的教案要求,教師根據(jù)課堂內容編寫教案是義不容辭的義務。教案能幫助教師調動學生學習的積極性。有沒有快速編寫教案的技巧呢?欄目小編收集并整理了“指數(shù)函數(shù)教案”,歡迎你參考,希望對你有所助益!...
老師都需要為每堂課準備教案課件,不過教案課件里知識點要設計好。?學生的思維方式和邏輯可以通過課堂反應得出結論,有沒有值得借鑒的優(yōu)秀教案課件素材?下面編輯為您呈送了“函數(shù)的課件教案”主題的相關內容,本文供你參考,希望能幫到你!...
古人云,工欲善其事,必先利其器。在幼兒教育工作中,我們都有會準備一寫需要用到資料。資料意義廣泛,可以指一些參考素材。有了資料才能更好的在接下來的工作輕裝上陣!那么,你知道幼師資料的主要內容是什么嗎?有請閱讀小編為你編輯的函數(shù)教學反思精選,希望對大家有所幫助。經過本周的教學,九三學生初步能做到:①能根...
對學生來說,又是學生智力的開發(fā)者和個性的塑造者,教案的選擇要適合教材和學生特點和教學方法。教案是激發(fā)教師潛能的有效途徑。是否在尋找好的教案模板呢?下面是幼兒教師教育網編輯為大家整理的“二次函數(shù)教案”,歡迎學習和參考,希望對你有幫助。...
活動目標 1、學習對應數(shù)量與數(shù)字1~10。 2、正確感知10以內的數(shù)量。 活動準備 《數(shù)字卡(1~10)》(自制的及掛圖)、1~10的數(shù)字兒歌、教室里的各種物品、蠟筆、自制人物教具、籃子六個(在籃子上...
最新更新