平面直角坐標(biāo)系教案。
教案課件在老師少不了一項工作事項,這就要老師好好去自己教案課件了。教案是落實教學(xué)目標(biāo)的有效手段,寫一篇教案課件要具備哪些步驟?下面是我為大家整理的關(guān)于“《平面直角坐標(biāo)系》教案”的資料,請收藏好,以便下次再讀!
教學(xué)目標(biāo):
1、理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫點的位置的方法。
2、掌握坐標(biāo)法解決幾何問題的步驟;體會坐標(biāo)系的作用。
教學(xué)難點:
能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問題。
情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時刻開始,需要隨時測定飛船在空中的位置機(jī)器運(yùn)動的軌跡。
情境2:運(yùn)動會的開幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺上座位排列整齊的人群不斷翻動手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點不同的畫布所在的位置。
在平面上,當(dāng)取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點P都可以由惟一的實數(shù)對(x,y)確定。
在空間中,選擇兩兩垂直且交于一點的三條直線,當(dāng)取定這三條直線的交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點P都可以由惟一的實數(shù)對(x,y,z)確定。
三、講解新課:
1、建立坐標(biāo)系是為了確定點的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:
任意一點都有確定的坐標(biāo)與其對應(yīng);反之,依據(jù)一個點的坐標(biāo)就能確定這個點的位置
例1選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長為1的正六邊形的頂點。
如何通過它們到點O的距離以及它們相對于點O的方位來刻畫,即用”距離和方向”確定點的位置
例2已知B村位于A村的正西方1公里處,原計劃經(jīng)過B村沿著北偏東60的方向設(shè)一條地下管線m、但在A村的西北方向400米出,發(fā)現(xiàn)一古代文物遺址W、根據(jù)初步勘探的結(jié)果,文物管理部門將遺址W周圍100米范圍劃為禁區(qū)、試問:埋設(shè)地下管線m的計劃需要修改嗎?
1一炮彈在某處爆炸,在A處聽到爆炸的時間比在B處晚2s,已知A、B兩地相距800米,并且此時的聲速為340m/s,求曲線的方程
2在面積為1的中,,建立適當(dāng)?shù)淖鴺?biāo)系,求以M,N為焦點并過點P的橢圓方程
通過平面變換可以把曲線變?yōu)橹行脑谠c的單位圓,請求出該復(fù)合變換?
2、利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問題。
六、課后作業(yè):
(一)本節(jié)教材所處的地位和作用:
“平面直角坐標(biāo)系”是“數(shù)軸”的發(fā)展,它的建立,使代數(shù)的基本元素(數(shù)對)與幾何的基本元素(點)之間產(chǎn)生一一對應(yīng),數(shù)發(fā)展成式、方程與函數(shù),點運(yùn)動而成直線、曲線等幾何圖形,于是實現(xiàn)了認(rèn)識上從一維空間到二維空間的發(fā)展,構(gòu)成更廣闊的范圍內(nèi)的數(shù)形結(jié)合、互相轉(zhuǎn)化的理論基礎(chǔ)。因此,平面直角坐標(biāo)系是溝通代數(shù)和幾何的橋梁,是非常重要的數(shù)學(xué)工具。直角坐標(biāo)系的基本知識是學(xué)習(xí)全章及至以后數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),在后面學(xué)習(xí)如何畫函數(shù)圖象以及研究一些具體函數(shù)圖象的性質(zhì)時,都要應(yīng)用這些知識;注意到這種知識前后的關(guān)系,適當(dāng)把握好本小節(jié)的教學(xué)要求,是教好、學(xué)好本小節(jié)的關(guān)鍵。如果沒有透徹理解這部分知識,就很難學(xué)好整個一章內(nèi)容。
知識目標(biāo):能根據(jù)坐標(biāo)(都為整數(shù))描出點的位置,能在方格紙中建立平面直角坐標(biāo)系,描述事物的位置。
能力目標(biāo):通過多不同象限的點的坐標(biāo)的`符號的研究,培養(yǎng)歸納、概括能力。
思想目標(biāo):在教學(xué)中滲透分類的思想,初步體會數(shù)形結(jié)合的思想。
我認(rèn)為本節(jié)課的教學(xué)重點是根據(jù)點的坐標(biāo)在直角坐標(biāo)系中描出點的位置,這是因為:
1.九年義務(wù)教育全日制初級中學(xué)數(shù)學(xué)教學(xué)大綱中明確規(guī)定要求學(xué)生掌握平面直角坐標(biāo)系,能夠使它成為有關(guān)論證思維工具。
2.學(xué)習(xí)知識的目的在于應(yīng)用,而平面直角坐標(biāo)系應(yīng)用相當(dāng)廣泛,它是代數(shù)、幾何學(xué)里最基本,最重要的解題的工具之一。
教學(xué)難點:總結(jié)各象限點及坐標(biāo)軸的坐標(biāo)的符號。是通過學(xué)生的探究實現(xiàn)的,用這種方法可以使學(xué)生更好的理解、記憶。
根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實際水平,我采用的是講練結(jié)合的方法。
因為本節(jié)課的知識點之一是“象限”,這就需要教師的精講。教師要引導(dǎo)學(xué)生去理解心知,并配合相關(guān)的練習(xí),引導(dǎo)學(xué)生系統(tǒng)地掌握基礎(chǔ)知識和基本技能,培養(yǎng)學(xué)生分析問題及解決問題的能力。
通過這節(jié)課的教學(xué)使學(xué)生“會質(zhì)疑,會嘗試”學(xué)生有得必先有疑,只有產(chǎn)生疑問學(xué)習(xí)才有動力。學(xué)生通過動手、動腦、動口,通過觀察、分析、歸納得出結(jié)論,這樣使學(xué)生感知知識的產(chǎn)生和發(fā)展過程,從而使學(xué)生達(dá)到理解消化的目的。教師不但要讓學(xué)生學(xué)會、更應(yīng)讓他們會學(xué)。所以,在教學(xué)中我設(shè)計了兩個探究問題,讓他們自己探究,歸納。從而培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
(一)以舊帶新:
利用上一節(jié)課對平面直角坐標(biāo)系的初步認(rèn)識,設(shè)計了一道口答題,(看圖說出各點的坐標(biāo))設(shè)計意圖是復(fù)習(xí)有關(guān)舊知識,可幫助學(xué)生理解新知,從而引出新課。
以教師講解的方式介紹四個象限的概念。
2.各象限點的坐標(biāo)的符號情況由學(xué)生探究。
具體安排是由例題、練習(xí)題作為鋪墊進(jìn)行探究,設(shè)計意圖是通過學(xué)生自己的探究,已有利于對四個象限概念的理解,有有利于對點的坐標(biāo)的理解。
3,同一圖形在不同直角坐標(biāo)系的坐標(biāo)不同。也是由學(xué)生進(jìn)行探究,具體由三步組成,一是找坐標(biāo)軸,二是寫坐標(biāo),三是從新建立坐標(biāo)系并寫出坐標(biāo),由淺入深的進(jìn)行探究,符合學(xué)生認(rèn)知水平的發(fā)展。
4、練習(xí):一部分出現(xiàn)在新課幾探究后,一部分出現(xiàn)在新課后,題是平面直角坐標(biāo)系的變式練習(xí),可考察思維的靈活性和全面性。又體現(xiàn)了平面直角坐標(biāo)系的實用價值,突出考察思維的全面性和深刻性。
練習(xí)的要有一定的梯度,首先,基礎(chǔ)型的題,找一名基礎(chǔ)稍差的學(xué)生來說,增強(qiáng)其信心,其次,作圖題,由于題的不是難點,由全體學(xué)生筆練完成,不必探究。
本節(jié)課的小結(jié),由教師進(jìn)行小結(jié),一方面可以小結(jié)新知,另一方面小結(jié)平面直角坐標(biāo)系的重要性及廣泛用途。
A組B組兩種領(lǐng)型,分兩種層次,即利于面向全體,又利于分類推進(jìn)。
日常生活及其它學(xué)科需要一種確定平面內(nèi)點的位置的方法。在數(shù)學(xué)上,可以類比數(shù)軸,引出平面直角坐標(biāo)系的概念。完成了坐標(biāo)平面內(nèi)的點與有序?qū)崝?shù)對的一一對應(yīng),也把數(shù)與形統(tǒng)一了起來。
⑵重點、難點分析:
本節(jié)的重點是能正確畫出直角坐標(biāo)系,并能在直角坐標(biāo)系中,根據(jù)坐標(biāo)找出點,由點求出坐標(biāo)。直角坐標(biāo)系的基本知識是學(xué)習(xí)全章的基礎(chǔ),在后面學(xué)習(xí)函數(shù)的圖象以及一些具體函數(shù)的圖象時都要應(yīng)用這些知識。通過對這部分知識的反復(fù)而深入的練習(xí)、應(yīng)用,滲透坐標(biāo)的思想,進(jìn)而形成數(shù)形結(jié)合的'的數(shù)學(xué)思想。
本節(jié)的難點是平面直角坐標(biāo)系中的點與有序?qū)崝?shù)對間的一一對應(yīng)。限于初中的學(xué)習(xí)范圍與學(xué)生的接受能力,學(xué)生理解起來有一定的困難,如:不理解有序?qū)崝?shù)對,或不能很好地理解一一對應(yīng),有的只限于機(jī)械地記憶,這樣會影響對數(shù)形結(jié)合思想的形成。教材上只給出了比較簡單的描述。教師可以通過課堂練習(xí),讓學(xué)生從一點一滴處理解橫、縱坐標(biāo)的值不同,即實數(shù)對不同,則在直角平面上的點的位置也不同,反之,亦然。
2、教學(xué)建議:
數(shù)學(xué)是世界的一部分,同時又隱藏在世界中。這樣,數(shù)學(xué)教學(xué)的目的之一就是使學(xué)生通過數(shù)學(xué)的學(xué)習(xí),認(rèn)識數(shù)學(xué)與現(xiàn)實世界的聯(lián)系,數(shù)學(xué)與人類生活的密切聯(lián)系,以及數(shù)學(xué)對人類歷史發(fā)展的影響與作用。因此,數(shù)學(xué)概念的產(chǎn)生有其必然性與合理性。
組織學(xué)生看本章引言中的氣溫圖,說明確定平面內(nèi)點的位置是實際需要的??梢宰寣W(xué)生進(jìn)行討論,他們的生活中還有什么類似的例子。如電影院中的座位,到圖書館找書,學(xué)生的課程表等。從豐富的背景材料中,體會數(shù)學(xué)的廣泛應(yīng)用性。
(2)講授概念:
現(xiàn)實生活和其它學(xué)科向數(shù)學(xué)提出了問題,如何建立數(shù)學(xué)模型以解決這個問題呢?以前,我們學(xué)習(xí)過數(shù)軸。數(shù)軸上每一個點都對應(yīng)一個實數(shù),這個實數(shù)叫做這個點在數(shù)軸上的坐標(biāo),數(shù)軸上的點與實數(shù)是一一對應(yīng)的。這樣利用數(shù)軸可以研究一些數(shù)量關(guān)系的問題。確定平面內(nèi)點的位置的方法也可以與此類似,類比出平面直角坐標(biāo)系的概念,并結(jié)合圖形講述平面直角坐標(biāo)系的有關(guān)概念。
(3)練習(xí),深入地理解概念:
平面直角這節(jié)課的概念較多,又都是新的,開始的時候不適合太快,給學(xué)生一個適應(yīng)的過程,一個思維的空間。如:x軸、y軸不在任何象限內(nèi),原點是x軸、y軸的交點等。然后,就可以多練習(xí)一些簡單題,如給出坐標(biāo),在平面直角坐標(biāo)系中標(biāo)點,或反之,給出平面直角坐標(biāo)系中點的位置,找出其坐標(biāo)。通過小題的練習(xí),使學(xué)生能逐步理解坐標(biāo)平面內(nèi)的點和有序?qū)崝?shù)對之間的一一對應(yīng)關(guān)系。
總之,形成初步的數(shù)學(xué)概念后,學(xué)生可以通過變式,逐步加深對概念的理解。在解題過程中,教師的任務(wù)是創(chuàng)設(shè)環(huán)境,激勵學(xué)生憑借自己的原有認(rèn)知水平,完成對數(shù)學(xué)知識的建構(gòu)。在相互討論評價的過程中,培養(yǎng)學(xué)生的責(zé)任心。
這節(jié)課可以分兩課時完成,第一節(jié)課由實際引入,類比數(shù)軸定義,給出平面直角坐標(biāo)系的概念,并通過練習(xí)達(dá)到熟練的程度。第二節(jié)課,可視第一節(jié)課的掌握情況,適當(dāng)增加一些有探索性的題目。如求一已知點關(guān)于x軸、y軸、原點的對稱點的坐標(biāo);一三象限角平分線上的點的坐標(biāo)特點等。
教學(xué)目標(biāo):
1、使學(xué)生進(jìn)一步熟悉由坐標(biāo)確定點和由點求坐標(biāo)的方法。理解平面內(nèi)的點與有序?qū)崝?shù)對之間的一一對應(yīng)關(guān)系。
2、會用象限和坐標(biāo)軸說明直角坐標(biāo)系內(nèi)點的位置,并會根據(jù)點的位置,確定點的橫坐標(biāo)、縱坐標(biāo)的符號。
3、掌握確定已知點關(guān)于坐標(biāo)軸(或原點)的對稱點的方法。培養(yǎng)學(xué)生觀察,歸納總結(jié)的能力。
4、培養(yǎng)學(xué)生發(fā)現(xiàn)問題,主動探索的能力。在與同伴的合作交流中,培養(yǎng)學(xué)生的責(zé)任心。
5、滲透數(shù)形結(jié)合的思想,培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性和深刻性。
教學(xué)重點:
1、掌握象限或坐標(biāo)軸上的點的坐標(biāo)的特點。
2、會求已知點關(guān)于坐標(biāo)軸或原點的對稱點的坐標(biāo)。
教學(xué)難點:
理解平面內(nèi)的點與有序?qū)崝?shù)對之間的一一對應(yīng)關(guān)系。
1:認(rèn)識并能畫出平面直角坐標(biāo)系;能在方格紙上建立適當(dāng)?shù)闹苯亲鴺?biāo)系,描述物體的位置;在給定的直角坐標(biāo)系中,會根據(jù)坐標(biāo)描出點的位置,由點的.位置寫出它的坐標(biāo)。
2:經(jīng)歷畫坐標(biāo)系、描點、連線、看圖以及由點找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合意識、合作交流意識。
能畫出平面直角坐標(biāo)系;會根據(jù)坐標(biāo)描出點的位置,由點的位置寫出它的坐標(biāo)。
能能建立平面直角坐標(biāo)系;求出點的坐標(biāo),由點的位置寫出它的坐標(biāo)。
1:要在平面內(nèi)確定一個地點的位置需要幾個數(shù)據(jù)?
2:練習(xí)如圖 你能確定各個景點的位置嗎?“大成殿”在“中心廣場”西、南各多少個格?“碑林” 在“中心廣場”東、北各多少個格?
1:我們可以以“中心廣場”為原點作兩條互相垂直的數(shù)軸,分別取向右和向上的方向為數(shù)軸的正方向,一個方格的邊長看做一個單位長度,你能表示出“碑林”的位置嗎?“大成殿”的位置嗎?(學(xué)生回答,老師小結(jié))
2:在平面內(nèi),兩條互相垂直且有公共原點的數(shù)軸組成平面直角坐標(biāo)系。(通常兩條數(shù)軸成水平位置與鉛直位置,取向上或向右為正方向,水平位置的數(shù)軸叫橫軸,鉛直位置的數(shù)軸叫縱軸,它們的公共原點叫直角坐標(biāo)系的原點。)
通過觀察可以總結(jié)出:平行于x軸的直線上的點,其縱坐標(biāo)相同,橫坐標(biāo)為任意實數(shù);平行于y軸的直線上的點,其橫坐標(biāo)相同,縱坐標(biāo)為任意實數(shù)。
另外一、三象限內(nèi),兩坐標(biāo)軸夾角平分線上的點,其橫坐標(biāo)與縱坐標(biāo)相同;二、四象限內(nèi),兩坐標(biāo)軸夾角平分線上的點,其橫坐標(biāo)與縱坐標(biāo)互為相反數(shù)。
建議:如果學(xué)生在觀察時有困難,可以適當(dāng)增加題量,豐富觀察的對象,逐步得出最后的結(jié)論。
這些規(guī)律也是有其必然的,如兩點的縱坐標(biāo)相同,則這兩點在x軸的同側(cè),且到x軸的距離相等,由平面幾何的知識,可推出這兩點的連線平行于x軸。其它的性質(zhì)也有其存在的道理。通過對規(guī)律的總結(jié),滲透數(shù)形結(jié)合思想,并讓學(xué)生體會數(shù)學(xué)知識的形成過程。而點的坐標(biāo)不同,它在平面上的位置也不相同。即平面上的點與有序?qū)崝?shù)對是一一對應(yīng)的從圖中可以看出。
你能發(fā)現(xiàn)上述各對點的位置有何特點嗎?它們的坐標(biāo)有何異同?你能總結(jié)出一般的規(guī)律嗎?并說明其中的道理嗎?
這道題能引發(fā)我們得出什么樣的結(jié)論呢?(答案不固定,本教案只給出參考答案)。我們可以這樣說:對于直角坐標(biāo)平面上的任意兩點,如果它們的橫坐標(biāo)相反,縱坐標(biāo)相同,則它們關(guān)于y軸對稱;如果它們橫坐標(biāo)相同,縱坐標(biāo)相反,則它們關(guān)于x軸對稱;如果題目的橫、縱坐標(biāo)都相反,則它們關(guān)于原點對稱,反之亦然。
以上的規(guī)律可以解決很多問題,比如,已知點(—10,3)。求這個點關(guān)于x軸、y軸,及原點的對稱點的坐標(biāo)。
答:(—10,—3);(10,3);(10,—3)。
你想過這其中的道理嗎?
如兩點關(guān)于y軸對稱。根據(jù)軸對稱的定義,這兩點的連線垂直于y軸,且到y(tǒng)軸的距離相等。所以這兩點的連線就平行于x軸,它們的縱坐標(biāo)相同,對稱點在y軸的兩點。到y(tǒng)軸的距離相等。即這兩點的橫坐標(biāo)相反。
類似地,可以組織學(xué)生進(jìn)行其它兩種情況的討論。這個規(guī)律只要求學(xué)生能理解,并不要求嚴(yán)格地證明。通過學(xué)生的主動探索,復(fù)習(xí)了對稱的概念,體驗了數(shù)形的結(jié)合。親身經(jīng)歷了數(shù)學(xué)知識的形成過程。也增強(qiáng)了學(xué)生的自信心,激發(fā)了他們互動探索的精神。
小結(jié):本節(jié)我們討論了三道例題,這三道題都是大家共同討論,通過觀察歸納總結(jié)探索出的規(guī)律,這也是數(shù)學(xué)知識產(chǎn)生的一種過程。而且每道題的解決都離不開數(shù)形結(jié)合的思想。而且也能逐步體會出平面內(nèi)的點與有序?qū)崝?shù)對之間的一一對應(yīng)關(guān)系。這一部分知識為今后的學(xué)習(xí)打下了基礎(chǔ),希望大家能真正地理解并能熟練應(yīng)用。
喜歡《《平面直角坐標(biāo)系》教案精選》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼兒園教案,同時,yjs21.com編輯還為您精選準(zhǔn)備了平面直角坐標(biāo)系教案專題,希望您能喜歡!
相關(guān)推薦
幼兒教師教育網(wǎng)主題欄目精選:“平面直角坐標(biāo)系教學(xué)反思”,敬請訪問。片言之賜,皆我?guī)熞?。?zhǔn)備教案是身為教師良好的工作習(xí)慣教師讓自己的教學(xué)思路在教案上得到描繪,編寫教案需要注意哪些事項?為此,我們從網(wǎng)絡(luò)上精心整理了《平面直角坐標(biāo)系教學(xué)反思》,僅供參考,歡迎大家閱讀本文。...
教案課件是每個老師在開學(xué)前需要準(zhǔn)備的東西,每個老師對于寫教案課件都不陌生。寫好教案,完整課堂教學(xué)不再是夢,網(wǎng)絡(luò)有沒有優(yōu)質(zhì)的教案課件以資借鑒呢?幼兒教師教育網(wǎng)特別編輯了“解直角三角形教案”,有需要的朋友就來看看吧!...
幼兒教師教育網(wǎng)推薦更多專題:“獨坐敬亭山教案”。教師要創(chuàng)造良好的物理情境,使師生共同置身于情境之中,教案的水平高低也反應(yīng)了老師是否在用心教育學(xué)生。手寫教案可以讓教師更好地梳理教學(xué)知識,所以你在寫教案時要注意些什么呢?幼兒教師教育網(wǎng)小編經(jīng)過搜集和處理,為你提供獨坐敬亭山教案,我們后續(xù)還將不斷提供這方面...
事前做好準(zhǔn)備,這樣當(dāng)事情來臨時,才能不慌不忙。作為教師就必須要準(zhǔn)備好教案課件。教案有利于教學(xué)水平的提高,有助于教研活動的開展。如何寫教案才能避免千篇一律呢?下面,幼兒教師教育網(wǎng)為大家整理的“關(guān)于平行四邊形的面積教案”,請在閱讀后,可以繼續(xù)收藏本頁!...
優(yōu)秀的人總是會提前做好準(zhǔn)備,身為一位人民教師,我們都希望孩子們能學(xué)到知識,因此,老師們都會選擇準(zhǔn)備一份教案,教案對教學(xué)過程進(jìn)行預(yù)測和推演,從而更好地實現(xiàn)教學(xué)目標(biāo)。您知道幼兒園教案應(yīng)該要怎么下筆嗎?或許你需要"平行四邊形的面積優(yōu)秀教案2500字精選"這樣的內(nèi)容,強(qiáng)烈建議你能收藏本頁以方便閱讀!一、說教...
最新更新