91啦丨国产丨蚪窝人妻首页,国产一区不卡,日本欧美大码aⅴ在线播放,西西人体444WwW高清大胆

幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

最新等差數(shù)列教案模板11篇

發(fā)布時(shí)間:2024-10-06

我們聽了一場(chǎng)關(guān)于“等差數(shù)列教案”的演講讓我們思考了很多。老師會(huì)對(duì)課本中的主要教學(xué)內(nèi)容整理到教案課件中,所以老師寫教案可不能隨便對(duì)待。教案是評(píng)估學(xué)生學(xué)習(xí)效果的有效依據(jù)。經(jīng)過(guò)閱讀本頁(yè)你的認(rèn)識(shí)會(huì)更加全面!

等差數(shù)列教案 篇1

一、教材分析

1、教材的地位和作用:

《等差數(shù)列》是人教版新課標(biāo)教材《數(shù)學(xué)》必修5第二章第二節(jié)的內(nèi)容。數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對(duì)比的依據(jù)。

2、教學(xué)目標(biāo)

根據(jù)教學(xué)大綱的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標(biāo)

a知識(shí)與技能:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想;初步引入“數(shù)學(xué)建?!钡乃枷敕椒ú⒛苓\(yùn)用。培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力;通過(guò)階梯性練習(xí),提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

b.過(guò)程與方法:在教學(xué)過(guò)程中我采用討論式、啟發(fā)式的方法使學(xué)生深刻的理解不完全歸納法。

c.情感態(tài)度與價(jià)值觀:通過(guò)對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

3、教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):①等差數(shù)列的概念。

②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及應(yīng)用。

難點(diǎn):①等差數(shù)列的通項(xiàng)公式的推導(dǎo)

②用數(shù)學(xué)思想解決實(shí)際問(wèn)題

二、學(xué)情教法分析:

對(duì)于高一學(xué)生,知識(shí)經(jīng)驗(yàn)已較為豐富,具備了一定的抽象思維能力和演繹推理能力,所以我本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問(wèn)題。學(xué)生在初中時(shí)只是簡(jiǎn)單的接觸過(guò)等差數(shù)列,具體的公式還不會(huì)用,因些在公式應(yīng)用上加強(qiáng)學(xué)生的理解

三、學(xué)法分析:

在引導(dǎo)分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問(wèn)題弄清。

四、教學(xué)過(guò)程

1.創(chuàng)設(shè)情景 提出問(wèn)題

首先要學(xué)生回憶數(shù)列的有關(guān)概念,數(shù)列的兩種方法——通項(xiàng)公式和遞推公式

等差數(shù)列教案 篇2

授課教師 授課班級(jí) 課 題 3.2.1等差數(shù)列(一) 課型 新授課 教學(xué)目標(biāo) 知識(shí)目標(biāo) 等差數(shù)列的定義.

等差數(shù)列的通項(xiàng)公式. 能力目標(biāo) 明確等差數(shù)列的定義.

掌握等差數(shù)列的通項(xiàng)公式,并能運(yùn)用其解決問(wèn)題. 情感目標(biāo) 培養(yǎng)學(xué)生的觀察能力.

進(jìn)一步提高學(xué)生的推理、歸納能力.

培養(yǎng)學(xué)生的應(yīng)用意識(shí). 教學(xué)重點(diǎn) 等差數(shù)列的定義的理解和掌握.

等差數(shù)列的通項(xiàng)公式的推導(dǎo)和應(yīng)用. 教學(xué)難點(diǎn) 等差數(shù)列“等差”特點(diǎn)的理解、把握和應(yīng)用. 教學(xué)過(guò)程 教學(xué)環(huán)節(jié)和教學(xué)內(nèi)容 設(shè)計(jì)意圖 【復(fù)習(xí)回顧】(2分鐘)

數(shù)列的定義以及數(shù)列的通項(xiàng)公式和遞推公式。

【引入】(3分鐘)

某人要用彩燈裝飾圣誕樹,這個(gè)人做事喜歡按一定的規(guī)律去做,他在圣誕樹的頂尖裝上1個(gè)彩燈,在第一層裝上4個(gè),第二層裝上7個(gè),第三層裝上10個(gè),第四層裝上13個(gè)。如果有第五層,你能猜得出他要裝上多少個(gè)彩燈嗎?他的規(guī)律是怎樣的?

你能根據(jù)規(guī)律在( )內(nèi)填上合適的數(shù)嗎?

(1)1, 4, 7,10,13,( )

(2)21, 21.5, 22, ( ), 23, 23.5,…

(3)8,( ), 2, -1, -4, …

(4)-7, -11, -15, ( ), -23

共同特點(diǎn):從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù)。這樣的數(shù)列叫做等差數(shù)列。

【講授新課】(16分鐘)

一、等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列。這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示。

用符號(hào)表示:

教師活動(dòng):分析定義,強(qiáng)調(diào)關(guān)鍵的地方,幫助學(xué)生理解和掌握。

問(wèn)題:1.數(shù)列(1)(2)(3)(4)的公差分別是多少?

2.(5)1, 3, 5, 7, 9, 2, 4, 6, 8, 10

(6)5, 5, 5, 5, 5, 5 ……是等差數(shù)列嗎?

3.求等差數(shù)列 1, 4, 7,10,13,16,…的第100項(xiàng)。

師生一起討論回答。

二、等差數(shù)列的通項(xiàng)公式

如果等差數(shù)列 的首項(xiàng)是 ,公差是d,則據(jù)其定義可得:

即:

即:

即:

由此歸納等差數(shù)列的通項(xiàng)公式可得:

∴已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng) 和公差d,便可求得其通項(xiàng)

思考:已知等差數(shù)列的第m項(xiàng) 和公差d,這個(gè)等差數(shù)列的通項(xiàng)公式是?答:

【例題講解】(8分鐘)

等差數(shù)列教案 篇3

等差數(shù)列是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書?數(shù)學(xué)5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時(shí)。

數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,?數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。

1、通過(guò)本節(jié)課的學(xué)習(xí)使學(xué)生理解并掌握等差數(shù)列的概念,能用定義判斷一個(gè)數(shù)列是否為等差數(shù)列。

2、引導(dǎo)學(xué)生了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想,會(huì)求等差數(shù)列的公差及通項(xiàng)公式,能在解題中靈活應(yīng)用,初步引入“數(shù)學(xué)建?!钡乃枷敕椒ú⒛苓\(yùn)用;并在此過(guò)程中培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力。

3、在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力;通過(guò)階梯性練習(xí),提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。cnsjbj.cn

②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及應(yīng)用。

難點(diǎn):

①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義。

普通高中學(xué)生經(jīng)過(guò)一年的高中的學(xué)習(xí)生活,已經(jīng)慢慢習(xí)慣的高中的學(xué)習(xí)氛圍,大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,且對(duì)數(shù)列的知識(shí)有了初步的接觸和認(rèn)識(shí),已經(jīng)熟悉由觀察到抽象的數(shù)學(xué)活動(dòng)過(guò)程,對(duì)函數(shù)、方程思想體會(huì)逐漸深刻,應(yīng)用數(shù)學(xué)公式的能力逐漸加強(qiáng)。他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力。但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了從教法、學(xué)法兩種方法對(duì)等差數(shù)列的通項(xiàng)公式進(jìn)行推導(dǎo),讓學(xué)生更好的理解。通過(guò)引入實(shí)例來(lái)啟發(fā)學(xué)生,挺高學(xué)生的學(xué)習(xí)興趣,是學(xué)生更加形象、愉快的去學(xué)習(xí)這堂課。下面是我教學(xué)設(shè)計(jì):

⑴誘導(dǎo)思維法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性。

⑵分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題,調(diào)動(dòng)學(xué)生的積極性。

⑶講練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn)。

引導(dǎo)學(xué)生首先從四個(gè)現(xiàn)實(shí)問(wèn)題(數(shù)數(shù)問(wèn)題、女子舉重獎(jiǎng)項(xiàng)設(shè)置問(wèn)題、水庫(kù)水位問(wèn)題、儲(chǔ)蓄問(wèn)題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法。

在南北朝時(shí)期《張邱建算經(jīng)》中,有一道題“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金 四斤,持出,下四人后入得金三斤,持出,中間三人未到者,亦依等次更 給,問(wèn)各得金幾何,及未到三人復(fù)應(yīng)得金幾何“。 這個(gè)問(wèn)題該怎樣解決呢?

由學(xué)生觀察分析并得出答案: 在現(xiàn)實(shí)生活中,我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5數(shù)一次,可以得到數(shù)列:0,5,___,___,___,___,?

水庫(kù)的管理人員為了保證優(yōu)質(zhì)魚 類有良好的生活環(huán)境,用定期放水清理水庫(kù)的雜魚。如果一個(gè)水庫(kù)的水位 為18cm,自然放水每天水位降低2.5m,最低降至5m。那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位組成數(shù)列(單位:m):18,15.5,13,10.5,8,5.5

思考:同學(xué)們觀察一下上面的這兩個(gè)數(shù)列: 0,5,10,15,20, ① 18,15.5,13,10.5,8,5.5 ② 看這些數(shù)列有什么共同特點(diǎn)呢?

傾聽和觀察分析,發(fā)表各自的意見。

對(duì)于以上幾組數(shù)列我們稱它們?yōu)榈炔顢?shù)列。請(qǐng)同學(xué)們根據(jù)我們剛才分析等差數(shù)列的特征,嘗試著給等差數(shù)列下個(gè)定義:等差數(shù)列:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示。那么對(duì)于以上兩組等差數(shù)列,它們的公差依次是5,5,-2.5。

提問(wèn):如果在a與b中間插入一個(gè)數(shù)A,使a,A,b成等差數(shù)列數(shù)列,那么A應(yīng)滿足什么條件?

由三個(gè)數(shù)a,A,b組成的等差數(shù)列可以看成最簡(jiǎn)單的等差數(shù)列,這時(shí),A叫做a與b

的等差中項(xiàng)。

不難發(fā)現(xiàn),在一個(gè)等差數(shù)列中,從第2項(xiàng)起,每一項(xiàng)(有窮數(shù)列的末項(xiàng)除外)都是它的前一項(xiàng)與后一項(xiàng)的等差中項(xiàng)。 如數(shù)列:1,3,5,7,9,11,13?中5是3和7的等差中項(xiàng),1和9的等差中項(xiàng)。9是7和11的等差中項(xiàng),5和13的等差中項(xiàng)。看來(lái),

等差數(shù)列教案 篇4

一、說(shuō)教材

等差數(shù)列為人教版必修5第二章第二節(jié)的內(nèi)容。數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的性質(zhì)與應(yīng)用等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對(duì)比的依據(jù)。

二、說(shuō)學(xué)情

對(duì)于我校的高中學(xué)生,知識(shí)經(jīng)驗(yàn)比較貧乏,雖然他們的智力發(fā)展已到了形式運(yùn)演階段,但并不具備教強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問(wèn)題。

三、說(shuō)教學(xué)目標(biāo)

【知識(shí)與技能】能夠準(zhǔn)確的說(shuō)出等差數(shù)列的特點(diǎn);能夠推導(dǎo)出等差數(shù)列的通項(xiàng)公式,并可以利用等差數(shù)列解決些簡(jiǎn)單的實(shí)際問(wèn)題。

【過(guò)程與方法】在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,鍛煉知識(shí)、方法遷移能力;通過(guò)階梯性練習(xí),提高分析問(wèn)題和解決問(wèn)題的能力。

【情感態(tài)度價(jià)值觀】通過(guò)對(duì)等差數(shù)列的研究,激發(fā)主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

四、說(shuō)教學(xué)重難點(diǎn)

【重點(diǎn)】等差數(shù)列的概念,等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及應(yīng)用。

【難點(diǎn)】等差數(shù)列通項(xiàng)公式的推導(dǎo),用“數(shù)學(xué)建?!钡乃枷虢鉀Q實(shí)際問(wèn)題。

五、說(shuō)教法與學(xué)法

數(shù)學(xué)教學(xué)是師生之間交往活動(dòng)共同發(fā)展的課程,結(jié)合本節(jié)課的特點(diǎn),我采取指導(dǎo)自主學(xué)習(xí)方法,并在引導(dǎo)分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問(wèn)題弄清。

六、說(shuō)教學(xué)過(guò)程

(一)復(fù)習(xí)導(dǎo)入

類比函數(shù),復(fù)習(xí)提問(wèn)數(shù)列的函數(shù)意義,即數(shù)列可看作是定義域?yàn)檎麛?shù)對(duì)應(yīng)的一列函數(shù)值,從而數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)的解析式。

設(shè)計(jì)意圖:通過(guò)復(fù)習(xí),為本節(jié)課用函數(shù)思想研究數(shù)列問(wèn)題作準(zhǔn)備,將課堂設(shè)置成為階梯型教學(xué),消除學(xué)生的畏難情緒。

(二)新課教學(xué)

教師創(chuàng)設(shè)具體情境,從具體事例中抽象出數(shù)學(xué)概念。

1.小明目前會(huì)100個(gè)單詞,他打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92

2.小芳只會(huì)5個(gè)單詞,他決定從今天起每天背記10個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25

通過(guò)練習(xí)1和2引出兩個(gè)具體的等差數(shù)列,初步認(rèn)識(shí)等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識(shí)創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個(gè)數(shù)列特點(diǎn),引出等差數(shù)列的概念,對(duì)問(wèn)題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。

接下來(lái)由學(xué)生嘗試總結(jié)歸納等差數(shù)列的定義:

如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,

這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。

(三)深化概念

教師請(qǐng)學(xué)生深度剖析等差數(shù)列的概念,進(jìn)一步強(qiáng)調(diào)

①“從第二項(xiàng)起”滿足條件;

②公差d一定是由后項(xiàng)減前項(xiàng)所得;

③每一項(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)(強(qiáng)調(diào)“同一個(gè)常數(shù)”);

在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,歸納出數(shù)學(xué)表達(dá)式:an+1-an=d(n≥1)

同時(shí)為配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。其中第一個(gè)數(shù)列公差小于0,第二個(gè)數(shù)列公差大于0,第三個(gè)數(shù)列公差等于0。由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0。

(四)歸納通項(xiàng)公式

在歸納等差數(shù)列通項(xiàng)公式中,我采用討論式的教學(xué)方法。由學(xué)生研究,分組討論上述四個(gè)等差數(shù)列的通項(xiàng)公式。通過(guò)總結(jié)對(duì)比找出共同點(diǎn)猜想一般等差數(shù)列的通向公式應(yīng)為怎樣的形式整個(gè)過(guò)程由學(xué)生完成,通過(guò)互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識(shí)又化解了教學(xué)難點(diǎn)。

猜想等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d

此時(shí)指出:這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法---迭加法:

在迭加法的證明過(guò)程中,我采用啟發(fā)式教學(xué)方法。

利用等差數(shù)列概念啟發(fā)學(xué)生寫出n-1個(gè)等式。

對(duì)照已歸納出的通項(xiàng)公式啟發(fā)學(xué)生想出將n-1個(gè)等式相加。證出通項(xiàng)公式。

在這里通過(guò)該知識(shí)點(diǎn)引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想” 的教學(xué)要求

接著舉例說(shuō)明:若一個(gè)等差數(shù)列{an}的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是:an=1+(n-1)×2,

即an=2n-1,以此來(lái)鞏固等差數(shù)列通項(xiàng)公式的運(yùn)用。

同時(shí)要求畫出該數(shù)列圖象,由此說(shuō)明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無(wú)窮多個(gè)孤立點(diǎn)。用函數(shù)的思想來(lái)研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

(五)應(yīng)用舉例

這一環(huán)節(jié)是使學(xué)生通過(guò)例題和練習(xí),增強(qiáng)對(duì)通項(xiàng)公式含義的理解以及對(duì)通項(xiàng)公式的運(yùn)用,提高解決實(shí)際問(wèn)題的能力。

先讓學(xué)生求等差數(shù)列的第20項(xiàng)、30項(xiàng)等。向?qū)W生表明:要用運(yùn)動(dòng)變化的觀點(diǎn)看等差數(shù)列通項(xiàng)公式中的a1、d、n、an這4個(gè)量之間的關(guān)系。當(dāng)其中的部分量已知時(shí),可根據(jù)該公式求出另一部分量。

此外還可以聯(lián)系實(shí)際建模問(wèn)題,如建造房屋時(shí)要設(shè)計(jì)樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計(jì)為等高的16級(jí)臺(tái)階,問(wèn)每級(jí)臺(tái)階高為多少米?

這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級(jí)臺(tái)階“等高”使學(xué)生想到每級(jí)臺(tái)階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型-----等差數(shù)列。

設(shè)置此題的目的:

1.加強(qiáng)同學(xué)們對(duì)應(yīng)用題的綜合分析能力;

2.通過(guò)數(shù)學(xué)實(shí)際問(wèn)題引出等差數(shù)列問(wèn)題,激發(fā)了學(xué)生的興趣;

3.再者通過(guò)數(shù)學(xué)實(shí)例展示了“從實(shí)際問(wèn)題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說(shuō)明實(shí)際問(wèn)題的“數(shù)學(xué)建?!钡臄?shù)學(xué)思想方法。

(六)小結(jié)作業(yè)

小結(jié):(由學(xué)生總結(jié)這節(jié)課的收獲)

1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式。

強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)。

2.等差數(shù)列的通項(xiàng)公式:an=a1+(n-1),會(huì)知三求一。

3.用“數(shù)學(xué)建?!彼枷敕椒ń鉀Q實(shí)際問(wèn)題

作業(yè):現(xiàn)實(shí)生活中還有哪些等差數(shù)列的實(shí)際應(yīng)用呢?根據(jù)實(shí)際問(wèn)題自己編寫兩道等差數(shù)列的題目并進(jìn)行求解。

激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,以及認(rèn)識(shí)到學(xué)習(xí)數(shù)學(xué)的重要性,將數(shù)學(xué)知識(shí)應(yīng)用于實(shí)際問(wèn)題的解決不僅回顧加深了本堂課的教學(xué)內(nèi)容,開闊學(xué)生思維,還鍛煉了學(xué)生學(xué)以致用、觀察分析問(wèn)題解決問(wèn)題的能力。

七、說(shuō)板書設(shè)計(jì)

在板書中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項(xiàng)起”及“同一常數(shù)”等幾個(gè)字用紅色粉筆標(biāo)注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書充分體現(xiàn)了精講多練的教學(xué)方法。

等差數(shù)列教案 篇5

[教學(xué)目標(biāo)]

1.知識(shí)與技能目標(biāo):掌握等差數(shù)列的概念;理解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項(xiàng)公式解決相應(yīng)的一些問(wèn)題。

2.過(guò)程與方法目標(biāo):讓學(xué)生親身經(jīng)歷“從特殊入手,研究對(duì)象的性質(zhì),再逐步擴(kuò)大到一般”這一研究過(guò)程,培養(yǎng)他們觀察、分析、歸納、推理的能力。通過(guò)階梯性的強(qiáng)化練習(xí),培養(yǎng)學(xué)生分析問(wèn)題解決問(wèn)題的能力。

3.情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求索精神;使學(xué)生逐步養(yǎng)成細(xì)心觀察、認(rèn)真分析、及時(shí)總結(jié)的好習(xí)慣。

[教學(xué)重難點(diǎn)]

1.教學(xué)重點(diǎn):等差數(shù)列的概念的理解,通項(xiàng)公式的推導(dǎo)及應(yīng)用。

2.教學(xué)難點(diǎn):

(1)對(duì)等差數(shù)列中“等差”兩字的把握;

(2)等差數(shù)列通項(xiàng)公式的推導(dǎo)。

[教學(xué)過(guò)程]

一.課題引入

創(chuàng)設(shè)情境引入課題:(這節(jié)課我們將學(xué)習(xí)一類特殊的數(shù)列,下面我們看這樣一些例子)

二、新課探究

(一)等差數(shù)列的定義

1、等差數(shù)列的定義

如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫等差數(shù)列。這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。

(1)定義中的關(guān)健詞有哪些?

(2)公差d是哪兩個(gè)數(shù)的差?

(二)等差數(shù)列的通項(xiàng)公式

探究1:等差數(shù)列的通項(xiàng)公式(求法一)

如果等差數(shù)列首項(xiàng)是,公差是,那么這個(gè)等差數(shù)列如何表示?呢?

根據(jù)等差數(shù)列的定義可得:

因此等差數(shù)列的通項(xiàng)公式就是:,

探究2:等差數(shù)列的通項(xiàng)公式(求法二)

根據(jù)等差數(shù)列的定義可得:

將以上-1個(gè)式子相加得等差數(shù)列的通項(xiàng)公式就是:,

三、應(yīng)用與探索

例1、(1)求等差數(shù)列8,5,2,…,的第20項(xiàng)。

(2)等差數(shù)列-5,-9,-13,…,的第幾項(xiàng)是–401?

(2)、分析:要判斷-401是不是數(shù)列的項(xiàng),關(guān)鍵是求出通項(xiàng)公式,并判斷是否存在正整數(shù)n,使得成立,實(shí)質(zhì)上是要求方程的正整數(shù)解。

例2、在等差數(shù)列中,已知=10,=31,求首項(xiàng)與公差d.

解:由,得。

在應(yīng)用等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d過(guò)程中,對(duì)an,a1,n,d這四個(gè)變量,知道其中三個(gè)量就可以求余下的一個(gè)量,這是一種方程的思想。

鞏固練習(xí)

1.等差數(shù)列{an}的前三項(xiàng)依次為a-6,-3a-5,-10a-1,則a=()。

2.一張?zhí)葑幼罡咭患?jí)寬33cm,最低一級(jí)寬110cm,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列。求公差d。

四、小結(jié)

1.等差數(shù)列的通項(xiàng)公式:

公差;

2.等差數(shù)列的計(jì)算問(wèn)題,通常知道其中三個(gè)量就可以利用通項(xiàng)公式an=a1+(n-1)d,求余下的一個(gè)量;

3.判斷一個(gè)數(shù)列是否為等差數(shù)列只需看是否為常數(shù)即可;

4.利用從特殊到一般的思維去發(fā)現(xiàn)數(shù)學(xué)系規(guī)律或解決數(shù)學(xué)問(wèn)題.

五、作業(yè):

1、必做題:課本第40頁(yè)習(xí)題2.2第1,3,5題

2、選做題:如何以最快的速度求:1+2+3+???+100=

等差數(shù)列教案 篇6

A、知識(shí)目標(biāo):

掌握等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法;掌握公式的運(yùn)用。

B、能力目標(biāo):

(1)通過(guò)公式的探索、發(fā)現(xiàn),在知識(shí)發(fā)生、發(fā)展以及形成過(guò)程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。

(2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認(rèn)知規(guī)律,讓學(xué)生在實(shí)踐中通過(guò)觀察、嘗試、分析、類比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學(xué)生類比思維能力。

(3)通過(guò)對(duì)公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學(xué)生思維的靈活性,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

(1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。

(2)通過(guò)公式的運(yùn)用,樹立學(xué)生“大眾教學(xué)”的思想意識(shí)。

(3)通過(guò)生動(dòng)具體的現(xiàn)實(shí)問(wèn)題,令人著迷的數(shù)學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹立學(xué)生求真的勇氣和自信心,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的心理體驗(yàn),產(chǎn)生熱愛數(shù)學(xué)的情感。

等差數(shù)列教案 篇7

依據(jù)課標(biāo),以及學(xué)生現(xiàn)有知識(shí)和本節(jié)教學(xué)內(nèi)容,制定教學(xué)目標(biāo)如下:

1.教學(xué)目標(biāo):

(1)知識(shí)與技能目標(biāo):(ⅰ) 初步掌握等差數(shù)列的前項(xiàng)和公式及推導(dǎo)方法;

(ⅱ) 當(dāng)以下5個(gè)量(a1,d,n,an,Sn)中已知三個(gè)量時(shí),能熟練運(yùn)用通項(xiàng)公式、前n項(xiàng)和公式求其余兩個(gè)量。

(2)過(guò)程與方法目標(biāo):通過(guò)公式的推導(dǎo)和公式的應(yīng)用,使學(xué)生體會(huì)數(shù)形結(jié)合的思想方法,體驗(yàn)從特殊到一般,再?gòu)囊话愕教厥獾乃季S規(guī)律。

(3)情感態(tài)度與價(jià)值觀:通過(guò)經(jīng)歷等差數(shù)列的前項(xiàng)和公式的探究活動(dòng),培養(yǎng)學(xué)生探索精神和創(chuàng)新意識(shí),提高學(xué)生解決實(shí)際問(wèn)題的觀念,激發(fā)學(xué)生的學(xué)習(xí)熱情。

2.教學(xué)重、難點(diǎn)

等差數(shù)列前項(xiàng)和公式的推導(dǎo)有助于培養(yǎng)學(xué)生的發(fā)散思維,而且在應(yīng)用公式的過(guò)程中體現(xiàn)了方程(組)思想,所以等差數(shù)列前項(xiàng)和公式的推導(dǎo)和簡(jiǎn)單應(yīng)用是本節(jié)課的重點(diǎn)。但由于高二學(xué)生推理能力有待提高,所以難點(diǎn)在于一般等差數(shù)列前項(xiàng)和公式的推導(dǎo)方法上。

等差數(shù)列教案 篇8

一、教學(xué)內(nèi)容分析

本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時(shí)。

數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。

二、學(xué)生學(xué)習(xí)情況分析

教學(xué)內(nèi)容針對(duì)的是高二的學(xué)生,經(jīng)過(guò)高中一年的學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也可能有一部分學(xué)生的基礎(chǔ)較弱,所以在授課時(shí)要從具體的生活實(shí)例出發(fā),使學(xué)生產(chǎn)生學(xué)習(xí)的興趣,注重引導(dǎo)、啟發(fā)學(xué)生的積極主動(dòng)的去學(xué)習(xí)數(shù)學(xué),從而促進(jìn)思維能力的進(jìn)一步提高。

三、設(shè)計(jì)思想

1.教法

⑴誘導(dǎo)思維法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性。

⑵分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題,調(diào)動(dòng)學(xué)生的積極性。

⑶講練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn)。

2.學(xué)法

引導(dǎo)學(xué)生首先從四個(gè)現(xiàn)實(shí)問(wèn)題(數(shù)數(shù)問(wèn)題、女子舉重獎(jiǎng)項(xiàng)設(shè)置問(wèn)題、水庫(kù)水位問(wèn)題、儲(chǔ)蓄問(wèn)題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法。

用多種方法對(duì)等差數(shù)列的通項(xiàng)公式進(jìn)行推導(dǎo)。

在引導(dǎo)分析時(shí),留出“空白”,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問(wèn)題弄清。

四、教學(xué)目標(biāo)

通過(guò)本節(jié)課的學(xué)習(xí)使學(xué)生能理解并掌握等差數(shù)列的概念,能用定義判斷一個(gè)數(shù)列是否為等差數(shù)列,引導(dǎo)學(xué)生了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想,掌握等差數(shù)列的通項(xiàng)公式與前 n 項(xiàng)和公式,并能解決簡(jiǎn)單的實(shí)際問(wèn)題;并在此過(guò)程中培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力,在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力。

五、教學(xué)重點(diǎn)與難點(diǎn)

重點(diǎn):

等差數(shù)列教案 篇9

第一方面:教材分析

本節(jié)知識(shí)的學(xué)習(xí)既能加深對(duì)數(shù)列概念的理解,又為后面學(xué)習(xí)數(shù)列有關(guān)知識(shí)提供研究的方法,具有承上啟下的重要作用。而且等差數(shù)列求和在現(xiàn)實(shí)中有著廣泛的應(yīng)用,同時(shí)本節(jié)課的學(xué)習(xí)還蘊(yùn)涵著倒序相加、數(shù)形結(jié)合、方程思想等深刻的數(shù)學(xué)思想方法。

第二方面:學(xué)情分析

知識(shí)基礎(chǔ):學(xué)生已掌握了函數(shù)、數(shù)列等有關(guān)基礎(chǔ)知識(shí),并且在小學(xué)和初中已了解特殊的數(shù)列求和。

能力基礎(chǔ):高二學(xué)生已初步具備邏輯思維能力,能在教師的引導(dǎo)下解決問(wèn)題,但處理抽象問(wèn)題的能力還有待進(jìn)一步提高。

第三方面:學(xué)習(xí)目標(biāo)

依據(jù)課標(biāo),以及學(xué)生現(xiàn)有知識(shí)和本節(jié)教學(xué)內(nèi)容,制定教學(xué)目標(biāo)如下:

1.教學(xué)目標(biāo):

(1)知識(shí)與技能目標(biāo):(?。?初步掌握等差數(shù)列的前項(xiàng)和公式及推導(dǎo)方法;

(ⅱ) 當(dāng)以下5個(gè)量(a1,d,n,an,Sn)中已知三個(gè)量時(shí),能熟練運(yùn)用通項(xiàng)公式、前n項(xiàng)和公式求其余兩個(gè)量。

(2)過(guò)程與方法目標(biāo):通過(guò)公式的推導(dǎo)和公式的應(yīng)用,使學(xué)生體會(huì)數(shù)形結(jié)合的思想方法,體驗(yàn)從特殊到一般,再?gòu)囊话愕教厥獾乃季S規(guī)律。

(3)情感態(tài)度與價(jià)值觀:通過(guò)經(jīng)歷等差數(shù)列的前項(xiàng)和公式的探究活動(dòng),培養(yǎng)學(xué)生探索精神和創(chuàng)新意識(shí),提高學(xué)生解決實(shí)際問(wèn)題的觀念,激發(fā)學(xué)生的學(xué)習(xí)熱情。

2.教學(xué)重、難點(diǎn)

等差數(shù)列前項(xiàng)和公式的推導(dǎo)有助于培養(yǎng)學(xué)生的發(fā)散思維,而且在應(yīng)用公式的過(guò)程中體現(xiàn)了方程(組)思想,所以等差數(shù)列前項(xiàng)和公式的推導(dǎo)和簡(jiǎn)單應(yīng)用是本節(jié)課的重點(diǎn)。但由于高二學(xué)生推理能力有待提高,所以難點(diǎn)在于一般等差數(shù)列前項(xiàng)和公式的推導(dǎo)方法上。

第四方面:教法學(xué)法

畢達(dá)哥拉斯說(shuō)過(guò):“在數(shù)學(xué)的天地里,重要的不是我們知道什幺,而是我們?cè)蹒壑朗茬??!?/p>

針對(duì)本節(jié)課的特點(diǎn),教師采用問(wèn)題探究式教學(xué)法,學(xué)生的學(xué)法以發(fā)現(xiàn)式學(xué)習(xí)法為主。

教學(xué)手段上通過(guò)多媒體輔助教學(xué),可以幫助學(xué)生直觀理解,提高課堂效率。

第五方面:教學(xué)過(guò)程

建構(gòu)主義理論認(rèn)為教師應(yīng)以問(wèn)題為載體,以學(xué)生活動(dòng)為主線開展教學(xué)。為此,我設(shè)計(jì)如下(情境引入、公式探索、公式推導(dǎo)、公式應(yīng)用、歸納總結(jié)和發(fā)展作業(yè))六個(gè)環(huán)節(jié)

1.情境引入

上課伊始,先給同學(xué)們看一段視頻,回顧學(xué)校建校60年的光輝歷史,然后跟同學(xué)們共同欣賞照片,提出

問(wèn)題1:學(xué)校為了慶祝建校60年,在校園里擺放了一些鮮花,最前面一行擺了4盆,后面每行比前一行多一盆,共八行,一共擺放了多少盆鮮花?

這樣設(shè)計(jì)幫助學(xué)生了解學(xué)校歷史,滲透德育教育,激發(fā)學(xué)習(xí)熱情。

有的學(xué)生會(huì)選擇直接相加,教師提出問(wèn)題:有沒有簡(jiǎn)單的方法呢?自然進(jìn)入第二環(huán)節(jié)。

2.公式探索

發(fā)現(xiàn)公式的推導(dǎo)方法是本節(jié)課的難點(diǎn),我先引導(dǎo)學(xué)生明確上述問(wèn)題的本質(zhì)是等差數(shù)列求和問(wèn)題,引出課題并板書,提出:

問(wèn)題2:如果每行的花都一樣多,則花的總數(shù)易于求得,我們?cè)鯓幽馨堰@些花補(bǔ)成每行都一樣多呢?

此時(shí),學(xué)生會(huì)想到如下幾種拼湊形式,我們選擇最易于解決原問(wèn)題的第1種

教師及時(shí)引導(dǎo)學(xué)生小結(jié):

對(duì)于求等差數(shù)列的前n項(xiàng)和在已知a1,an,n時(shí),可選擇公式(1);已知a1,d,n時(shí)可選擇公式(2);

設(shè)計(jì)意圖:例1是等差數(shù)列前項(xiàng)和兩個(gè)公式的直接應(yīng)用,對(duì)于不同的已知條件選擇不同的公式,幫助學(xué)生完成對(duì)公式的記憶和鞏固,例1的第(2)問(wèn)由教師板書解題步驟,起到了示范教學(xué)的效果。

例2由學(xué)生板書,師生共同完善給予評(píng)價(jià),變式由學(xué)生互評(píng),教師及時(shí)引導(dǎo)學(xué)生進(jìn)行小結(jié):

已知等差數(shù)列如下a1,d,n,an,Sn五個(gè)量中三個(gè)可求其余兩個(gè),即等差數(shù)列“知三求二”。

設(shè)計(jì)上述題目,實(shí)現(xiàn)對(duì)公式的簡(jiǎn)單應(yīng)用這一教學(xué)目標(biāo)。

5.歸納總結(jié)

教師引導(dǎo)學(xué)生總結(jié)本節(jié)課的知識(shí)要點(diǎn)和思想方法,師生共同完善,對(duì)本節(jié)內(nèi)容整體把握。

6.布置作業(yè)

我根據(jù)學(xué)情分層布置作業(yè),基礎(chǔ)性作業(yè)的安排是為鞏固課堂內(nèi)容,發(fā)展性作業(yè)可以幫助學(xué)生進(jìn)一步體會(huì)等差數(shù)列前項(xiàng)和公式的結(jié)構(gòu),通過(guò)開放性作業(yè),幫助學(xué)生關(guān)注課堂,拓展知識(shí)面,提高學(xué)生自主學(xué)習(xí)能力。

(課件打出(1)課本第41頁(yè)練習(xí)B 1,2題

(2) 思考與討論:自主探討公式(2)并思考:如果一個(gè)數(shù)列的前n項(xiàng)和Sn=an2+bn+c(a,b,c為常數(shù)),那幺這個(gè)數(shù)列一定是等差數(shù)列嗎?請(qǐng)同學(xué)們給予證明。

六、設(shè)計(jì)說(shuō)明

1.設(shè)計(jì)特色

(1)在探求公式推導(dǎo)思路的過(guò)程中,滲透德育教育,培養(yǎng)學(xué)生良好道德情操;

(2)公式推導(dǎo)和應(yīng)用階段,借助問(wèn)題臺(tái)階,創(chuàng)造性使用教材,符合認(rèn)知規(guī)律,體現(xiàn)教學(xué)科學(xué)性。

2.是板書設(shè)計(jì)。

等差數(shù)列教案 篇10

2。2。1等差數(shù)列學(xué)案

一、預(yù)習(xí)問(wèn)題:

1、等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從 起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè) ,那么這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的 , 通常用字母 表示。

2、等差中項(xiàng):若三個(gè)數(shù) 組成等差數(shù)列,那么A叫做 與 的 ,

即 或 。

3、等差數(shù)列的單調(diào)性:等差數(shù)列的公差 時(shí),數(shù)列為遞增數(shù)列; 時(shí),數(shù)列為遞減數(shù)列; 時(shí),數(shù)列為常數(shù)列;等差數(shù)列不可能是 。

4、等差數(shù)列的通項(xiàng)公式: 。

5、判斷正誤:

①1,2,3,4,5是等差數(shù)列; ( )

②1,1,2,3,4,5是等差數(shù)列; ( )

③數(shù)列6,4,2,0是公差為2的等差數(shù)列; ( )

④數(shù)列 是公差為 的等差數(shù)列; ( )

⑤數(shù)列 是等差數(shù)列; ( )

⑥若 ,則 成等差數(shù)列; ( )

⑦若 ,則數(shù)列 成等差數(shù)列; ( )

⑧等差數(shù)列是相鄰兩項(xiàng)中后項(xiàng)與前項(xiàng)之差等于非零常數(shù)的'數(shù)列; ( )

⑨等差數(shù)列的公差是該數(shù)列中任何相鄰兩項(xiàng)的差。 ( )

6、思考:如何證明一個(gè)數(shù)列是等差數(shù)列。

二、實(shí)戰(zhàn)操作:

例1、(1)求等差數(shù)列8,5,2,的第20項(xiàng)。

(2) 是不是等差數(shù)列 中的項(xiàng)?如果是,是第幾項(xiàng)?

(3)已知數(shù)列 的公差 則

例2、已知數(shù)列 的通項(xiàng)公式為 ,其中 為常數(shù),那么這個(gè)數(shù)列一定是等差數(shù)列嗎?

例3、已知5個(gè)數(shù)成等差數(shù)列,它們的和為5,平方和為 求這5個(gè)數(shù)。

等差數(shù)列教案 篇11

【教學(xué)目標(biāo)】

1.知識(shí)目標(biāo):理解等差數(shù)列定義,掌握等差數(shù)列的通項(xiàng)公式.

2.能力目標(biāo):培養(yǎng)學(xué)生觀察、歸納能力,在學(xué)習(xí)過(guò)程中,體會(huì)歸納思想和化歸思想并加深認(rèn)識(shí);通過(guò)概念的引入與通項(xiàng)公式的推導(dǎo),培養(yǎng)學(xué)生分析探索能力,增強(qiáng)運(yùn)用公式解決實(shí)際問(wèn)題的能力.

3.情感目標(biāo):通過(guò)對(duì)等差數(shù)列的研究,使學(xué)生明確等差數(shù)列與一般數(shù)列的內(nèi)在聯(lián)系,滲透特殊與一般的辯證唯物主義觀點(diǎn),加強(qiáng)理論聯(lián)系實(shí)際,激發(fā)學(xué)生的學(xué)習(xí)興趣.

【教學(xué)重點(diǎn)】

①等差數(shù)列的概念;②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及應(yīng)用.

【教學(xué)難點(diǎn)】

①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義;②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程.

【學(xué)情分析】

我所教學(xué)的學(xué)生是我校高一(10)班的學(xué)生(平行班學(xué)生),經(jīng)過(guò)快一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展.

【設(shè)計(jì)思路】

1.教法

①誘導(dǎo)思維法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性.

②分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題,調(diào)動(dòng)學(xué)生的積極性.

③講練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).

2.學(xué)法

引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問(wèn)題(數(shù)數(shù)問(wèn)題、水庫(kù)水位問(wèn)題、儲(chǔ)蓄問(wèn)題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法.

用多種方法對(duì)等差數(shù)列的通項(xiàng)公式進(jìn)行推導(dǎo).

在引導(dǎo)分析時(shí),留出“空白”,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問(wèn)題弄清.

幼兒教師教育網(wǎng)的幼兒園教案頻道為您編輯的《最新等差數(shù)列教案模板11篇》內(nèi)容,希望能幫到您!同時(shí)我們的等差數(shù)列教案專題還有需要您想要的內(nèi)容,歡迎您訪問(wèn)!

相關(guān)推薦

  • 數(shù)學(xué)等差數(shù)列教案2000字 老師每一堂上一般都需要一份教案課件,大家可以開始寫自己課堂教案課件了。教案課件寫好了,老師教學(xué)質(zhì)量肯定也差不了,對(duì)于寫教案課件有哪些疑問(wèn)呢?出于您的需求,欄目小編為您搜集了以下內(nèi)容:數(shù)學(xué)等差數(shù)列教案,供大家借鑒和使用,希望大家分享!...
    2023-04-30 閱讀全文
  • 等差數(shù)列課件 我們?yōu)槟暨x特別的“等差數(shù)列課件”,保證讓您連連驚喜。老師們?cè)谡缴险n之前需要精心準(zhǔn)備這個(gè)學(xué)期的教學(xué)教案課件,每個(gè)老師都要認(rèn)真思考自己的教案課件。一個(gè)出色的教案是實(shí)現(xiàn)教學(xué)目標(biāo)和落實(shí)教學(xué)內(nèi)容的必不可少的工具。請(qǐng)務(wù)必將這篇文章收藏好,下次再讀。...
    2023-05-21 閱讀全文
  • [參考]等差數(shù)列教案通用 寫教案時(shí)教學(xué)要求一定要得當(dāng),教案與教師的教學(xué)工作息息相關(guān)。教案成為學(xué)生發(fā)展的主導(dǎo)者和促進(jìn)者。有沒有寫好教案的秘訣呢?下面,我們?yōu)槟阃扑]了等差數(shù)列教案,相信你能從本文中找到需要的內(nèi)容。...
    2022-12-25 閱讀全文
  • 等差數(shù)列課件10篇 教案課件是老師不可缺少的課件,我們需要靜下心來(lái)寫教案課件。制定好教案需要教師有穩(wěn)定的教學(xué)基礎(chǔ)。以下是我們?yōu)槟淼囊幌盗信c“等差數(shù)列課件”有關(guān)的內(nèi)容,請(qǐng)您認(rèn)真閱讀本文并考慮收藏保存!...
    2024-06-27 閱讀全文
  • 等比數(shù)列教案 跟幼兒教師教育網(wǎng)小編一起來(lái)了解關(guān)于“等比數(shù)列教案”的內(nèi)容吧。學(xué)生們有一個(gè)生動(dòng)有趣的課堂,離不開老師辛苦準(zhǔn)備的教案,需要大家認(rèn)真編寫每份教案課件。教案是幫助教師組織教學(xué)活動(dòng)的重要工具。希望您覺得本文是有價(jià)值的閱讀!...
    2024-08-26 閱讀全文

老師每一堂上一般都需要一份教案課件,大家可以開始寫自己課堂教案課件了。教案課件寫好了,老師教學(xué)質(zhì)量肯定也差不了,對(duì)于寫教案課件有哪些疑問(wèn)呢?出于您的需求,欄目小編為您搜集了以下內(nèi)容:數(shù)學(xué)等差數(shù)列教案,供大家借鑒和使用,希望大家分享!...

2023-04-30 閱讀全文

我們?yōu)槟暨x特別的“等差數(shù)列課件”,保證讓您連連驚喜。老師們?cè)谡缴险n之前需要精心準(zhǔn)備這個(gè)學(xué)期的教學(xué)教案課件,每個(gè)老師都要認(rèn)真思考自己的教案課件。一個(gè)出色的教案是實(shí)現(xiàn)教學(xué)目標(biāo)和落實(shí)教學(xué)內(nèi)容的必不可少的工具。請(qǐng)務(wù)必將這篇文章收藏好,下次再讀。...

2023-05-21 閱讀全文

寫教案時(shí)教學(xué)要求一定要得當(dāng),教案與教師的教學(xué)工作息息相關(guān)。教案成為學(xué)生發(fā)展的主導(dǎo)者和促進(jìn)者。有沒有寫好教案的秘訣呢?下面,我們?yōu)槟阃扑]了等差數(shù)列教案,相信你能從本文中找到需要的內(nèi)容。...

2022-12-25 閱讀全文

教案課件是老師不可缺少的課件,我們需要靜下心來(lái)寫教案課件。制定好教案需要教師有穩(wěn)定的教學(xué)基礎(chǔ)。以下是我們?yōu)槟淼囊幌盗信c“等差數(shù)列課件”有關(guān)的內(nèi)容,請(qǐng)您認(rèn)真閱讀本文并考慮收藏保存!...

2024-06-27 閱讀全文

跟幼兒教師教育網(wǎng)小編一起來(lái)了解關(guān)于“等比數(shù)列教案”的內(nèi)容吧。學(xué)生們有一個(gè)生動(dòng)有趣的課堂,離不開老師辛苦準(zhǔn)備的教案,需要大家認(rèn)真編寫每份教案課件。教案是幫助教師組織教學(xué)活動(dòng)的重要工具。希望您覺得本文是有價(jià)值的閱讀!...

2024-08-26 閱讀全文
欧美三级日韩三级| 久久久精品日| 最近免费高清版电影在线观看| 精品大尺度在线视频| 国产精品久久久午夜夜伦鲁鲁| 欧呦呦女| h在线免费视频| 国产欧美日韩二区| www福利导航久久| 久久久久免费精品国产| 一起草无码视频| 欧美少妇bb| 欧美亚洲日韩久| 超碰东京热少妇| 亚州成人毛片| 国产裸女久久久久久| 国产精品青草久久久久婷婷| 亚洲国产欧美不卡影院| 亚洲天堂密臀av| 亚洲无码精品在线观| 久久久精品人妻一区二区三区四 | 欧美日韩综合一| 亚洲AV乱码久久精品蜜桃| 91精品国产久| 亚洲AV永久天堂在线观看| 国产模特精品视频| 亚洲无码乱伦视频| 日本熟妇一区二区三区| 中文字幕乱码第三页| 久久亚洲国产女同av| 日韩无码第| 久久久强奸久久| www狠狠| 国产精品电影999| 亚洲永久在线观看| 丁香六月深爱激情网| 2021国内精品久久久久精| 亚洲av综合色区| 成年人免费试看片| 国产欧美日本| 婷婷爽|