作為一位杰出的教職工,很有必要精心設(shè)計一份教學(xué)設(shè)計,教學(xué)設(shè)計一般包括教學(xué)目標(biāo)、教學(xué)重難點、教學(xué)方法、教學(xué)步驟與時間分配等環(huán)節(jié)。教學(xué)設(shè)計要怎么寫呢?以下是小編整理的高中數(shù)學(xué)教學(xué)設(shè)計,僅供參考,希望能夠幫助到大家。
一、教材
《直線與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線和圓的位置關(guān)系是本章的重點內(nèi)容之一。從知識體系上看,它既是點與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習(xí)切線的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關(guān)知識間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。
二、學(xué)情
學(xué)生初中已經(jīng)接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習(xí)過程中掌握了點的坐標(biāo)、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標(biāo)法研究點與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。
三、教學(xué)目標(biāo)
(一)知識與技能目標(biāo)
能夠準(zhǔn)確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關(guān)系。
(二)過程與方法目標(biāo)
經(jīng)歷操作、觀察、探索、總結(jié)直線與圓的位置關(guān)系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。
(三)情感態(tài)度價值觀目標(biāo)
激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結(jié)規(guī)律的能力,解題時養(yǎng)成歸納總結(jié)的良好習(xí)慣。
四、教學(xué)重難點
(一)重點
用解析法研究直線與圓的位置關(guān)系。
(二)難點
體會用解析法解決問題的數(shù)學(xué)思想。
五、教學(xué)方法
根據(jù)本節(jié)課教材內(nèi)容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術(shù)工具,以幾何畫板為平臺,通過圖形的動態(tài)演示,變抽象為直觀,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習(xí)的方式,這樣可以為不同認知基礎(chǔ)的學(xué)生提供學(xué)習(xí)機會,同時有利于發(fā)揮各層次學(xué)生的作用,教師始終堅持啟發(fā)式教學(xué)原則,設(shè)計一系列問題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動。
六、教學(xué)過程
(一)導(dǎo)入新課
教師借助多媒體創(chuàng)設(shè)泰坦尼克號的情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?
教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習(xí)的直線與圓的位置關(guān)系,將所想到的航行路線轉(zhuǎn)化成數(shù)學(xué)簡圖,即相交、相切、相離。
設(shè)計意圖:在已有的知識基礎(chǔ)上,提出新的問題,有利于保持學(xué)生知識結(jié)構(gòu)的連續(xù)性,同時開闊視野,激發(fā)學(xué)生的學(xué)習(xí)興趣。
(二)新課教學(xué)——探究新知
教師提問如何判斷直線與圓的位置關(guān)系,學(xué)生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學(xué)生的鼓勵。
判斷方法:
(1)定義法:看直線與圓公共點個數(shù)
即研究方程組解的個數(shù),具體做法是聯(lián)立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。
(2)比較法:圓心到直線的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進一步拋出疑問,對比兩種方法,由學(xué)生觀察實踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。
已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?
讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。
當(dāng)已知了直線與圓的方程之后,圓心坐標(biāo)和半徑r易得到,問題的關(guān)鍵是如何得到圓心到直線的距離d,他的本質(zhì)是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學(xué)利用直線方程求兩直線交點的方法,聯(lián)立直線與圓的方程,組成方程組,通過方程組解得個數(shù)確定直線與圓的交點個數(shù),進一步確定他們的位置關(guān)系。最后明確解題步驟。
(四)歸納總結(jié)——鞏固新知
為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:
可由方程組的解的不同情況來判斷:
當(dāng)方程組有兩組實數(shù)解時,直線l與圓C相交;
當(dāng)方程組有一組實數(shù)解時,直線l與圓C相切;
當(dāng)方程組沒有實數(shù)解時,直線l與圓C相離。
活動:我將抽取兩位同學(xué)在黑板上扮演,并在巡視過程中對部分學(xué)生加以指導(dǎo)。最后對黑板上的兩名學(xué)生的解題過程加以分析完善。通過對基礎(chǔ)題的練習(xí),鞏固兩種判斷直線與圓的位置關(guān)系判斷方法,并使每一個學(xué)生獲得后續(xù)學(xué)習(xí)的信心。
(五)小結(jié)作業(yè)
在小結(jié)環(huán)節(jié),我會以口頭提問的方式:
(1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?
(2)在數(shù)學(xué)問題的解決過程中運用了哪些數(shù)學(xué)思想?
設(shè)計意圖:啟發(fā)式的課堂小結(jié)方式能讓學(xué)生主動回顧本節(jié)課所學(xué)的知識點。也促使學(xué)生對知識網(wǎng)絡(luò)進行主動建構(gòu)。
作業(yè):在學(xué)生回顧本堂學(xué)習(xí)內(nèi)容明確兩種解題思路后,教師讓學(xué)生對比兩種解法,那種更簡捷,明確本節(jié)課主要用比較d與r的關(guān)系來解決這類問題,對用方程組解的個數(shù)的判斷方法,要求學(xué)生課外做進一步的探究,下一節(jié)課匯報。
七、板書設(shè)計
我的板書本著簡介、直觀、清晰的原則,這就是我的板書設(shè)計。
一、課題:
人教版全日制普通高級中學(xué)教科書數(shù)學(xué)第一冊(上)《2.7對數(shù)》
二、指導(dǎo)思想與理論依據(jù):
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:高中數(shù)學(xué)課程應(yīng)講清一些基本內(nèi)容的實際背景和應(yīng)用價值,開展“數(shù)學(xué)建?!钡膶W(xué)習(xí)活動,把數(shù)學(xué)的應(yīng)用自然地融合在平常的教學(xué)中。任何一個數(shù)學(xué)概念的引入,總有它的現(xiàn)實或數(shù)學(xué)理論發(fā)展的需要。都應(yīng)強調(diào)它的現(xiàn)實背景、數(shù)學(xué)理論發(fā)展背景或數(shù)學(xué)發(fā)展歷史上的背景,這樣才能使教學(xué)內(nèi)容顯得自然和親切,讓學(xué)生感到知識的發(fā)展水到渠成而不是強加于人,從而有利于學(xué)生認識數(shù)學(xué)內(nèi)容的實際背景和應(yīng)用的價值。在教學(xué)設(shè)計時,既要關(guān)注學(xué)生在數(shù)學(xué)情感態(tài)度和科學(xué)價值觀方面的發(fā)展,也要幫助學(xué)生理解和掌握數(shù)學(xué)基礎(chǔ)知識和基本技能,發(fā)展能力。在課程實施中,應(yīng)結(jié)合教學(xué)內(nèi)容介紹一些對數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物,用以反映數(shù)學(xué)在人類社會進步、人類文化建設(shè)中的作用,同時反映社會發(fā)展對數(shù)學(xué)發(fā)展的促進作用。
三、教材分析:
本節(jié)內(nèi)容主要學(xué)習(xí)對數(shù)的概念及其對數(shù)式與指數(shù)式的互化。它屬于函數(shù)領(lǐng)域的知識。而對數(shù)的概念是對數(shù)函數(shù)部分教學(xué)中的核心概念之一,而函數(shù)的思想方法貫穿在高中數(shù)學(xué)教學(xué)的始終。通過對數(shù)的學(xué)習(xí),可以解決數(shù)學(xué)中知道底數(shù)和冪值求指數(shù)的問題,以及對數(shù)函數(shù)的相關(guān)問題。
四、學(xué)情分析:
在ab=N(a>0,a≠1)中,知道底數(shù)和指數(shù)可以求冪值,那么知道底數(shù)和冪值如何求求指數(shù),從學(xué)生認知的角度自然就產(chǎn)生了這樣的需要。因此,在前面學(xué)習(xí)指數(shù)的基礎(chǔ)上學(xué)習(xí)對數(shù)的概念是水到渠成的事。
五、教學(xué)目標(biāo):
(一)教學(xué)知識點:
1.對數(shù)的概念。
2.對數(shù)式與指數(shù)式的互化。
(二)能力目標(biāo):
1.理解對數(shù)的概念。
2.能夠進行對數(shù)式與指數(shù)式的互化。
(三)德育滲透目標(biāo):
1.認識事物之間的相互聯(lián)系與相互轉(zhuǎn)化,2.用聯(lián)系的觀點看問題。
六、教學(xué)重點與難點:
重點是對數(shù)定義,難點是對數(shù)概念的理解。
七、教學(xué)方法:
講練結(jié)合法八、教學(xué)流程:
問題情景(復(fù)習(xí)引入)——實例分析、形成概念(導(dǎo)入新課)——深刻認識概念(對數(shù)式與指數(shù)式的互化)——變式分析、深化認識(對數(shù)的'性質(zhì)、對數(shù)恒等式,介紹自然對數(shù)及常用對數(shù))——練習(xí)小結(jié)、形成反思(例題,小結(jié))
八、教學(xué)反思:
對本節(jié)內(nèi)容在進行教學(xué)設(shè)計之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,教材內(nèi)容的處理收到了一定的預(yù)期效果,尤其是練習(xí)的處理,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識,達到了設(shè)計中所預(yù)想的目標(biāo)。然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認為,教師的干預(yù)(講解)還是太多。在以后的教學(xué)中,對于一些較簡單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來設(shè)計課堂教學(xué),關(guān)注學(xué)生個性和潛能的發(fā)展,使教學(xué)過程更加切合《課程標(biāo)準(zhǔn)》的要求。
對于本教學(xué)設(shè)計,時間倉促,不足之處在所難免,期待與各位同仁交流。
學(xué)習(xí)目標(biāo)
明確排列與組合的聯(lián)系與區(qū)別,能判斷一個問題是排列問題還是組合問題;能運用所學(xué)的排列組合知識,正確地解決的實際問題.
學(xué)習(xí)過程
一、學(xué)前準(zhǔn)備
復(fù)習(xí):
1.(課本P28A13)填空:
(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是;
(2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數(shù)是;
(3)5名工人要在3天中各自選擇1天休息,不同方法的'種數(shù)是;
(4)集合A有個元素,集合B有個元素,從兩個集合中各取1個元素,不同方法的種數(shù)是;
二、新課導(dǎo)學(xué)
◆探究新知(復(fù)習(xí)教材P14~P25,找出疑惑之處)
問題1:判斷下列問題哪個是排列問題,哪個是組合問題:
(1)從4個風(fēng)景點中選出2個安排游覽,有多少種不同的方法?
(2)從4個風(fēng)景點中選出2個,并確定這2個風(fēng)景點的游覽順序,有多少種不同的方法?
◆應(yīng)用示例
例1.從10個不同的文藝節(jié)目中選6個編成一個節(jié)目單,如果某女演員的獨唱節(jié)目一定不能排在第二個節(jié)目的位置上,則共有多少種不同的排法?
例2.7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數(shù).
(1)甲站在中間;
(2)甲、乙必須相鄰;
(3)甲在乙的左邊(但不一定相鄰);
(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;
(5)甲、乙、丙相鄰;
(6)甲、乙不相鄰;
(7)甲、乙、丙兩兩不相鄰。
◆反饋練習(xí)
1. (課本P40A4)某學(xué)生邀請10位同學(xué)中的6位參加一項活動,其中兩位同學(xué)要么都請,要么都不請,共有多少種邀請方法?
2.5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列
3.馬路上有12盞燈,為了節(jié)約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種.
當(dāng)堂檢測
1.某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目.如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為( )
A.42 B.30 C.20 D.12
2.(課本P40A7)書架上有4本不同的數(shù)學(xué)書,5本不同的物理書,3本不同的化學(xué)書,全部排在同一層,如果不使同類的書分開,一共有多少種排法?
課后作業(yè)
1.(課本P41B2)用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的數(shù),問:(1)能夠組成多少個六位奇數(shù)?(2)能夠組成多少個大于201345的正整數(shù)?
2.(課本P41B4)某種產(chǎn)品的加工需要經(jīng)過5道工序,問:(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?
一、指導(dǎo)思想與理論依據(jù)
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
二、教材分析
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實驗教科書(人教A版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六)。本節(jié)是第一課時,教學(xué)內(nèi)容為公式(二)、(三)、(四)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角與、終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標(biāo)之間關(guān)系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四)。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位。
三、學(xué)情分析
本節(jié)課的授課對象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容。
四、教學(xué)目標(biāo)
(1)基礎(chǔ)知識目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;
(2)能力訓(xùn)練目標(biāo):能正確運用誘導(dǎo)公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數(shù)求值與化簡;
(3)創(chuàng)新素質(zhì)目標(biāo):通過對公式的推導(dǎo)和運用,提高三角恒等變形的能力和滲透化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生分析問題、解決問題的能力;
(4)個性品質(zhì)目標(biāo):通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀。
五、教學(xué)重點和難點
1、教學(xué)重點
理解并掌握誘導(dǎo)公式。
2、教學(xué)難點
正確運用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式。
六、教法學(xué)法以及預(yù)期效果分析
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究。下面我從教法、學(xué)法、預(yù)期效果等三個方面做如下分析。
1、教法
數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動的教學(xué),而不僅僅是數(shù)學(xué)活動的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識,更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì)。
在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅。
2、學(xué)法
“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點、大容量、快推進的做法,以便教給學(xué)生更多的知識點,卻忽略了學(xué)生接受知識需要時間消化,進而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情。如何能讓學(xué)生最大程度的消化知識,提高學(xué)習(xí)熱情是教者必須思考的問題。
在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題、共同探討、解決問題簡單應(yīng)用、重現(xiàn)探索過程、練習(xí)鞏固。讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學(xué)習(xí)轉(zhuǎn)化為主動的自主學(xué)習(xí)。
3、預(yù)期效果
本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡單的化簡問題。
七、教學(xué)流程設(shè)計
(一)創(chuàng)設(shè)情景
1、復(fù)習(xí)銳角300,450,600的三角函數(shù)值;
2、復(fù)習(xí)任意角的三角函數(shù)定義;
3、問題:由你能否知道sin2100的值嗎?引如新課。
設(shè)計意圖
高中數(shù)學(xué)優(yōu)秀教案高中數(shù)學(xué)教學(xué)設(shè)計與教學(xué)反思
自信的鼓勵是增強學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡單易做的題加強了每個學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學(xué)生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法。
(二)新知探究
1、讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;
2、讓學(xué)生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點的坐標(biāo)有什么關(guān)系;
3、Sin2100與sin300之間有什么關(guān)系。
設(shè)計意圖
由特殊問題的引入,使學(xué)生容易了解,實現(xiàn)教學(xué)過程的平淡過度,為同學(xué)們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊。
(三)問題一般化
探究一
1、探究發(fā)現(xiàn)任意角的終邊與的終邊關(guān)于原點對稱;
2、探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點坐標(biāo)關(guān)于原點對稱;
3、探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系。
設(shè)計意圖
首先應(yīng)用單位圓,并以對稱為載體,用聯(lián)系的觀點,把單位圓的性質(zhì)與三角函數(shù)聯(lián)系起來,數(shù)形結(jié)合,問題的設(shè)計提問從特殊到一般,從線對稱到點對稱到三角函數(shù)值之間的關(guān)系,逐步上升,一氣呵成誘導(dǎo)公式二。同時也為學(xué)生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習(xí)設(shè)計為了熟悉公式一,讓學(xué)生感知到成功的喜悅,進而敢于挑戰(zhàn),敢于前進
(四)練習(xí)
利用誘導(dǎo)公式(二),口答下列三角函數(shù)值。
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題。
(五)問題變形
由sin3000=—sin600出發(fā),用三角的定義引導(dǎo)學(xué)生求出sin(—3000),Sin1500值,讓學(xué)生聯(lián)想若已知sin3000=—sin600,能否求出sin(—3000),Sin1500)的值。學(xué)生自主探究
一、概述
教材內(nèi)容:等比數(shù)列的概念和通項公式的推導(dǎo)及簡單應(yīng)用 教材難點:靈活應(yīng)用等比數(shù)列及通項公式解決一般問題 教材重點:等比數(shù)列的概念和通項公式
二、教學(xué)目標(biāo)分析
1. 知識目標(biāo)
1)
2) 掌握等比數(shù)列的定義 理解等比數(shù)列的通項公式及其推導(dǎo)
2.能力目標(biāo)
1)學(xué)會通過實例歸納概念
2)通過學(xué)習(xí)等比數(shù)列的.通項公式及其推導(dǎo)學(xué)會歸納假設(shè)
3)提高數(shù)學(xué)建模的能力
3、情感目標(biāo):
1)充分感受數(shù)列是反映現(xiàn)實生活的模型
2)體會數(shù)學(xué)是來源于現(xiàn)實生活并應(yīng)用于現(xiàn)實生活
3)數(shù)學(xué)是豐富多彩的而不是枯燥無味的
三、教學(xué)對象及學(xué)習(xí)需要分析
1、 教學(xué)對象分析:
1)高中生已經(jīng)有一定的學(xué)習(xí)能力,對各方面的知識有一定的基礎(chǔ),理解能力較強。并掌握了函數(shù)及個別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學(xué)習(xí)了等差數(shù)列,在學(xué)習(xí)這一章節(jié)時可聯(lián)系以前所學(xué)的進行引導(dǎo)教學(xué)。
2)對歸納假設(shè)較弱,應(yīng)加強這方面教學(xué)
2、學(xué)習(xí)需要分析:
四. 教學(xué)策略選擇與設(shè)計
1.課前復(fù)習(xí)
1)復(fù)習(xí)等差數(shù)列的概念及通向公式
2)復(fù)習(xí)指數(shù)函數(shù)及其圖像和性質(zhì)
2.情景導(dǎo)入
一、學(xué)習(xí)目標(biāo)與任務(wù)
1、學(xué)習(xí)目標(biāo)描述
知識目標(biāo)
(A)理解和掌握圓錐曲線的第一定義和第二定義,并能應(yīng)用第一定義和第二定義來解題。
(B)了解圓錐曲線與現(xiàn)實生活中的聯(lián)系,并能初步利用圓錐曲線的知識進行知識延伸和知識創(chuàng)新。
能力目標(biāo)
(A)通過學(xué)生的操作和協(xié)作探討,培養(yǎng)學(xué)生的實踐能力和分析問題、解決問題的能力。
(B)通過知識的再現(xiàn)培養(yǎng)學(xué)生的創(chuàng)新能力和創(chuàng)新意識。
(C)專題網(wǎng)站中提供各層次的例題和習(xí)題,解決各層次學(xué)生的學(xué)習(xí)過程中的各種的需要,從而培養(yǎng)學(xué)生應(yīng)用知識的能力。
德育目標(biāo)
讓學(xué)生體會知識產(chǎn)生的全過程,培養(yǎng)學(xué)生運動變化的辯證唯物主義思想。
2、學(xué)習(xí)內(nèi)容與學(xué)習(xí)任務(wù)說明
本節(jié)課的內(nèi)容是圓錐曲線的第一定義和圓錐曲線的統(tǒng)一定義,以及利用圓錐曲線的定義來解決軌跡問題和最值問題。
學(xué)習(xí)重點:圓錐曲線的第一定義和統(tǒng)一定義。
學(xué)習(xí)難點:圓錐曲線第一定義和統(tǒng)一定義的應(yīng)用。
明確本課的重點和難點,以學(xué)習(xí)任務(wù)驅(qū)動為方式,以圓錐曲線定義和定義應(yīng)用為中心,主動操作實驗、大膽分析問題和解決問題。
抓住本節(jié)課的重點和難點,采取的基于學(xué)科專題網(wǎng)站下的三者結(jié)合的教學(xué)模式,突出重點、突破難點。
充分利用《圓錐曲線》專題網(wǎng)站內(nèi)的內(nèi)容,在著重學(xué)習(xí)內(nèi)容的基礎(chǔ)上,內(nèi)延外拓,培養(yǎng)學(xué)生的創(chuàng)新精神和克服困難的信心。
二、學(xué)習(xí)者特征分析
(說明學(xué)生的學(xué)習(xí)特點、學(xué)習(xí)習(xí)慣、學(xué)習(xí)交往特點等)
l本課的學(xué)習(xí)對象為高二下學(xué)期學(xué)生,他們經(jīng)過近兩年的高中學(xué)習(xí),已經(jīng)有一定的學(xué)習(xí)基礎(chǔ)和分析問題、解決問題的能力,基本的計算機操作較為熟練。
高二年下學(xué)期學(xué)生由于高考的.壓力,他們保持著傳統(tǒng)教學(xué)的學(xué)習(xí)習(xí)慣,在
l課堂上的主體作用的體現(xiàn)不是太充分,但是如果他們還是樂于嘗試、勇于探索的。
高二年的學(xué)生在學(xué)習(xí)交往上“個別化學(xué)習(xí)”和“協(xié)作討論學(xué)習(xí)”并存,也就是說學(xué)生是具有一定的群體性小組交流能力與協(xié)同討論學(xué)習(xí)能力的,還是能完成上課時教師布置的協(xié)作學(xué)習(xí)任務(wù)的。
三、學(xué)習(xí)環(huán)境選擇與學(xué)習(xí)資源設(shè)計
1.學(xué)習(xí)環(huán)境選擇(打√)
(1)Web教室(√)(2)局域網(wǎng)(3)城域網(wǎng)(4)校園網(wǎng)(√)(5)Internet(√)
(6)其它
2、學(xué)習(xí)資源類型(打√)
(1)課件(網(wǎng)絡(luò)課件)(√)(2)工具(3)專題學(xué)習(xí)網(wǎng)站(√)(4)多媒體資源庫
(5)案例庫(6)題庫(7)網(wǎng)絡(luò)課程(8)其它
3、學(xué)習(xí)資源內(nèi)容簡要說明
(說明名稱、網(wǎng)址、主要內(nèi)容等)
《圓錐曲線專題網(wǎng)站》:從自然與科技、定義與應(yīng)用、性質(zhì)與實踐和創(chuàng)新與未來四個方面圍繞圓錐曲線進行探討與研究。(IP:192.168.3.134)
用Flash5、幾何畫板和Authorware6制作可操作且具有交互性的網(wǎng)絡(luò)課件放在專題網(wǎng)站里。
四、學(xué)習(xí)情境創(chuàng)設(shè)
1、學(xué)習(xí)情境類型(打√)
(1)真實性情境(√)(2)問題性情境(√)
(3)虛擬性情境(√)(4)其它
2、學(xué)習(xí)情境設(shè)計
真實性情境:用Flash5制作的一系列教學(xué)軟件。用幾何畫板制作的《圓錐曲線的統(tǒng)一定義》的教學(xué)軟件。
問題性情境:圓錐曲線的截取方法、圓錐曲線的各種定義、典型例題。
虛擬性情境:Authorware6制作的《圓錐曲線的截取》,模擬曲線截取。
五、學(xué)習(xí)活動的組織
1、自主學(xué)習(xí)設(shè)計(打√并填寫相關(guān)內(nèi)容)
(1)拋錨式
(2)支架式(√)相應(yīng)內(nèi)容:圓錐曲線的第一定義和統(tǒng)一定義。
使用資源:數(shù)學(xué)教材、專題網(wǎng)站及專題網(wǎng)站下的多媒體教學(xué)軟件。
學(xué)生活動:分析、操作、協(xié)作討論、總結(jié)、提交結(jié)論。
教師活動:問題的提出。學(xué)習(xí)資源獲取路徑的指導(dǎo)。問題解答和咨詢。
(3)隨機進入式(√)相應(yīng)內(nèi)容:圓錐曲線定義的典型應(yīng)用。
使用資源:軌跡問題、最值問題、其它問題三種典型例題以及各個題目的動畫演示和答案。
學(xué)生活動:根據(jù)自身情況選題、分析題目、協(xié)作討論、解答題目。
教師活動:講解例題,總結(jié)點評學(xué)生做題過程中的問題。
(4)其它
2、協(xié)作學(xué)習(xí)設(shè)計(打√并填寫相關(guān)內(nèi)容)
(1)競爭
(2)伙伴(√)
相應(yīng)內(nèi)容:圓錐曲線的第一定義和統(tǒng)一定義
使用資源:數(shù)學(xué)教材、專題網(wǎng)站及專題網(wǎng)站下的多媒體教學(xué)軟件。
分組情況:每組三人
學(xué)生活動:學(xué)生之間對圓錐曲線的定義展開討論,從而達到對定義的理解和掌握。
教師活動:問題的提出。學(xué)習(xí)資源獲取路徑的指導(dǎo)。問題解答和咨詢。
(3)協(xié)同(√)
相應(yīng)內(nèi)容:圓錐曲線定義的典型應(yīng)用。
使用資源:軌跡問題、最值問題、其它問題三種典型例題以及各個題目的動畫演示和答案。
分組情況:每組三人。
學(xué)生活動:通過協(xié)作討論區(qū),同學(xué)之間互相配合、互相幫助、各種觀點互相補充。
教師活動:總結(jié)點評學(xué)生做題過程中的問題。
(4)辯論
(5)角色扮演
(6)其它
4、教學(xué)結(jié)構(gòu)流程的設(shè)計
六、學(xué)習(xí)評價設(shè)計
1、測試形式與工具(打√)
(1)堂上提問(√)(2)書面練習(xí)(3)達標(biāo)測試(4)學(xué)生自主網(wǎng)上測試(√)(5)合作完成作品(6)其它
2、測試內(nèi)容
教師堂上提問:圓錐曲線的定義、學(xué)生提交的結(jié)論的完整性、學(xué)生協(xié)作討論時的疑問、例題講解過程中問題,課堂總結(jié)。
學(xué)生自主網(wǎng)上測試:解決軌跡問題、最值問題、其它問題三種典型題目。
(附)圓錐曲線專題網(wǎng)站設(shè)計分析
(1)設(shè)計思路
(A)給學(xué)生操作與實踐的機會:在每一環(huán)節(jié)中建設(shè)一個可供學(xué)生操作的實驗平臺。
(B)突出教學(xué)中“主導(dǎo)和主體”的作用:在每一環(huán)節(jié)中建設(shè)一個可供師生交流的平臺。
(C)突出知識的再創(chuàng)新過程和知識的延伸:如圓錐曲線的作法和知識的創(chuàng)新與應(yīng)用。
(D)強調(diào)教學(xué)軟件的交互性:如在題目中給出提示的動畫過程和解答過程。
(E)突出和各學(xué)科的聯(lián)系:如斜拋運動和行星運動等等。
(F)強調(diào)分層次的教學(xué):
如在知識應(yīng)用中的配置不同層次的例題和練習(xí):
(2)網(wǎng)站導(dǎo)航圖
一、教學(xué)目標(biāo)
1、在初中學(xué)過原命題、逆命題知識的基礎(chǔ)上,初步理解四種命題。
2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。
3、通過對四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力
4、初步培養(yǎng)學(xué)生反證法的數(shù)學(xué)思維。
二、教學(xué)分析
重點:四種命題;難點:四種命題的關(guān)系
1、本小節(jié)首先從初中數(shù)學(xué)的命題知識,給出四種命題的概念,接著,講述四種命題的關(guān)系,最后,在初中的基礎(chǔ)上,結(jié)合四種命題的知識,進一步講解反證法。
2、教學(xué)時,要注意控制教學(xué)要求。本小節(jié)的內(nèi)容,只涉及比較簡單的命題,不研究含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,
3、“若p則q”形式的命題,也是一種復(fù)合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學(xué)生,只要求能分清命題“若p則q”中的條件與結(jié)論就可以了,不必考慮p與q是命題,還是開語句。
三、教學(xué)手段和方法(演示教學(xué)法和循序漸進導(dǎo)入法)
1、以故事形式入題
2、多媒體演示
四、教學(xué)過程
(一)引入:一個生活中有趣的與命題有關(guān)的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數(shù)學(xué)思想嗎?通過這節(jié)課的學(xué)習(xí)我們就能揭開它的廬山真面,學(xué)生的興奮點被緊緊抓住,躍躍欲試!
設(shè)計意圖:創(chuàng)設(shè)情景,激發(fā)學(xué)生學(xué)習(xí)興趣
(二)復(fù)習(xí)提問:
1.命題“同位角相等,兩直線平行”的條件與結(jié)論各是什么?
2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?
3.原命題真,逆命題一定真嗎?
“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.
學(xué)生活動:
口答:(l)若同位角相等,則兩直線平行;
(2)若一個四邊形是正方形,則它的四條邊相等.
設(shè)計意圖:通過復(fù)習(xí)舊知識,打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).
(三)新課講解:
1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結(jié)論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結(jié)論作為條件,條件作為結(jié)論,得到的命題就叫做原命題的逆命題。
2.把命題“同位角相等,兩直線平行”的條件與結(jié)論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。
3.把命題“同位角相等,兩直線平行”的條件與結(jié)論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。
(四)組織討論:
讓學(xué)生歸納什么是否命題,什么是逆否命題。
(五)課堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?
(六)課堂小結(jié):
1、一般地,用p和q分別表示原命題的條件和結(jié)論,用¬p和¬q分別表示p和q否定時,四種命題的形式就是:
原命題若p則q;
逆命題若q則p;(交換原命題的條件和結(jié)論)
否命題,若¬p則¬q;(同時否定原命題的條件和結(jié)論)
逆否命題若¬q則¬p。(交換原命題的條件和結(jié)論,并且同時否定)
2、四種命題的關(guān)系
(1).原命題為真,它的逆命題不一定為真。
(2).原命題為真,它的否命題不一定為真。
(3).原命題為真,它的逆否命題一定為真。
(七)回扣引入
分析引入中的笑話,先討論,后總結(jié):現(xiàn)在我們來分析一下主人說的四句話:
第一句:“該來的沒來”其逆否命題是“不該來的來了”,甲認為自己是不該來的,所以甲走了。
第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認為自己該走,所以乙也走了。
第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認為說的是自己,所以丙也走了。
五、作業(yè)
1.設(shè)原命題是“若斷它們的真假.,則”,寫出它的逆命題、否命題與逆否命題,并分別判。
2.設(shè)原命題是“當(dāng)時,若,則”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假。
教學(xué)目標(biāo):
(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題.
(2)進一步理解曲線的方程和方程的曲線.
(3)初步掌握求曲線方程的方法.
(4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力.
教學(xué)重點、難點:求曲線的方程.
教學(xué)用具:
計算機.
教學(xué)方法:
啟發(fā)引導(dǎo)法,討論法.
教學(xué)過程:
【引入】
1.提問:什么是曲線的方程和方程的曲線.
學(xué)生思考并回答.教師強調(diào).
2.坐標(biāo)法和解析幾何的意義、基本問題.
對于一個幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問題就是:
(1)根據(jù)已知條件,求出表示平面曲線的方程.
(2)通過方程,研究平面曲線的性質(zhì).
事實上,在前邊所學(xué)的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.
【問題】
如何根據(jù)已知條件,求出曲線的方程.
【實例分析】
例1:設(shè)、兩點的坐標(biāo)是、(3,7),求線段的垂直平分線的方程.
首先由學(xué)生分析:根據(jù)直線方程的知識,運用點斜式即可解決.
解法一:易求線段的中點坐標(biāo)為(1,3),
由斜率關(guān)系可求得l的斜率為
于是有
即l的方程為
①
分析、引導(dǎo):上述問題是我們早就學(xué)過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?
(通過教師引導(dǎo),是學(xué)生意識到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).
證明:(1)曲線上的點的坐標(biāo)都是這個方程的解.
設(shè)是線段的垂直平分線上任意一點,則
即
將上式兩邊平方,整理得
這說明點的坐標(biāo)是方程的解.
(2)以這個方程的解為坐標(biāo)的點都是曲線上的點.
設(shè)點的坐標(biāo)是方程①的任意一解,則
到、的距離分別為
所以,即點在直線上.
綜合(1)、(2),①是所求直線的方程.
至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標(biāo)都是這個方程的解中,設(shè)是線段的垂直平分線上任意一點,最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見,這個證明過程就表明一種求解過程,下面試試看:
解法二:設(shè)是線段的垂直平分線上任意一點,也就是點屬于集合
由兩點間的距離公式,點所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當(dāng)然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.
這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應(yīng)的思想.因此是個好方法.
讓我們用這個方法試解如下問題:
例2:點與兩條互相垂直的直線的距離的積是常數(shù)求點的軌跡方程.
分析:這是一個純粹的幾何問題,連坐標(biāo)系都沒有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進行求解.
求解過程略.
【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):
分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:
首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點;然后寫出表示曲線的點集;再代入坐標(biāo);最后整理出方程,并證明或修正.說得更準(zhǔn)確一點就是:
(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對例如表示曲線上任意一點的坐標(biāo);
(2)寫出適合條件的'點的集合;
(3)用坐標(biāo)表示條件,列出方程;
(4)化方程為最簡形式;
(5)證明以化簡后的方程的解為坐標(biāo)的點都是曲線上的點.
一般情況下,求解過程已表明曲線上的點的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標(biāo)的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.
上述五個步驟可簡記為:建系設(shè)點;寫出集合;列方程;化簡;修正.
下面再看一個問題:
例3:已知一條曲線在軸的上方,它上面的每一點到點的距離減去它到軸的距離的差都是2,求這條曲線的方程.
【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系.
解:設(shè)點是曲線上任意一點,軸,垂足是(如圖2),那么點屬于集合
由距離公式,點適合的條件可表示為
①
將①式移項后再兩邊平方,得
化簡得
由題意,曲線在軸的上方,所以,雖然原點的坐標(biāo)(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.
【練習(xí)鞏固】
題目:在正三角形內(nèi)有一動點,已知到三個頂點的距離分別為、 、,且有,求點軌跡方程.
分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個坐標(biāo)軸,這條邊的垂直平分線為另一個軸,建立直角坐標(biāo)系比較簡單,如圖3所示.設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為.
根據(jù)條件,代入坐標(biāo)可得
化簡得
①
由于題目中要求點在三角形內(nèi),所以,在結(jié)合①式可進一步求出、的范圍,最后曲線方程可表示為
【小結(jié)】師生共同總結(jié):
(1)解析幾何研究研究問題的方法是什么?
(2)如何求曲線的方程?
(3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應(yīng)注意什么?
【作業(yè)】課本第72頁練習(xí)1,2,3;
教學(xué)目標(biāo)
1、知識與技能:
函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依
賴關(guān)系,同時還用集合與對應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想與意識.
2、過程與方法:
(1)通過實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
(2)了解構(gòu)成函數(shù)的要素;
(3)會求一些簡單函數(shù)的定義域和值域;
(4)能夠正確使用“區(qū)間”的符號表示函數(shù)的定義域;
3、情感態(tài)度與價值觀,使學(xué)生感受到學(xué)習(xí)函數(shù)的必要性和重要性,激發(fā)學(xué)習(xí)的積極性。
教學(xué)重點/難點
重點:理解函數(shù)的模型化思想,用集合與對應(yīng)的語言來刻畫函數(shù);
難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學(xué)用具
多媒體
4、標(biāo)簽
函數(shù)及其表示
教學(xué)過程
(一)創(chuàng)設(shè)情景,揭示課題
1、復(fù)習(xí)初中所學(xué)函數(shù)的概念,強調(diào)函數(shù)的模型化思想;
2、閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:
(1)炮彈的射高與時間的變化關(guān)系問題;
(2)南極臭氧空洞面積與時間的變化關(guān)系問題;
(3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題。
3、分析、歸納以上三個實例,它們有什么共同點;
4、引導(dǎo)學(xué)生應(yīng)用集合與對應(yīng)的語言描述各個實例中兩個變量間的依賴關(guān)系;
5、根據(jù)初中所學(xué)函數(shù)的概念,判斷各個實例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系.
(二)研探新知
1、函數(shù)的有關(guān)概念
(1)函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).
注意:
①“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
②函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x.
(2)構(gòu)成函數(shù)的三要素是什么?
定義域、對應(yīng)關(guān)系和值域
(3)區(qū)間的概念
①區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
②無窮區(qū)間;
③區(qū)間的數(shù)軸表示.
(4)初中學(xué)過哪些函數(shù)?它們的定義域、值域、對應(yīng)法則分別是什么?
通過三個已知的函數(shù):y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比較描述性定義和集合,與對應(yīng)語言刻畫的定義,談?wù)勼w會。
師:歸納總結(jié)
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維。
1、如何求函數(shù)的定義域
例1:已知函數(shù)f(x)=+
(1)求函數(shù)的定義域;
(2)求f(-3),f()的值;
(3)當(dāng)a>0時,求f(a),f(a-1)的值。
分析:函數(shù)的定義域通常由問題的實際背景確定,如前所述的三個實例。如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
例2、設(shè)一個矩形周長為80,其中一邊長為x,求它的'面積關(guān)于x的函數(shù)的解析式,并寫出定義域。
分析:由題意知,另一邊長為x,且
(3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號內(nèi)的式子大于或等于零的實數(shù)的集合。
(4)如果f(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合。(即求各集合的交集)
(5)滿足實際問題有意義。
鞏固練習(xí):課本P19第1
2、如何判斷兩個函數(shù)是否為同一函數(shù)
例3、下列函數(shù)中哪個與函數(shù)y=x相等?
分析:
1構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))
2兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。
解:
課本P18例2
(四)歸納小結(jié)
①從具體實例引入了函數(shù)的概念,用集合與對應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時引出了區(qū)間的概念。
(五)設(shè)置問題,留下懸念
1、課本P24習(xí)題1.2(A組)第1—7題(B組)第1題
2、舉出生活中函數(shù)的例子(三個以上),并用集合與對應(yīng)的語言來描述函數(shù),同時說出函數(shù)的定義域、值域和對應(yīng)關(guān)系。
課堂小結(jié)
一、教學(xué)內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象.恰當(dāng)?shù)乩枚x解題,許多時候能以簡馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。
二、學(xué)生學(xué)習(xí)情況分析
我所任教班級的學(xué)生參與課堂教學(xué)活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達能力也略顯不足。
三、設(shè)計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時,借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.
四、教學(xué)目標(biāo)
深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點坐標(biāo)、頂點坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。
通過對練習(xí),強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.
五、教學(xué)重點與難點:
教學(xué)重點
對圓錐曲線定義的理解
利用圓錐曲線的定義求“最值”
“定義法”求軌跡方程
教學(xué)難點:
巧用圓錐曲線定義解題
六、教學(xué)過程設(shè)計
【設(shè)計思路】
(一)開門見山,提出問題
一上課,我就直截了當(dāng)?shù)亟o出——
例題1:(1)已知A(-2,0),B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是( )。
(A)橢圓(B)雙曲線(C)線段(D)不存在
(2)已知動點M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是( )。
(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線
【設(shè)計意圖】
定義是揭示概念的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個必備條件,而通過一個階段的學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。
為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準(zhǔn)備了兩道練習(xí)題。
【學(xué)情預(yù)設(shè)】
估計多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的`定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費一番周折——如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2
5這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5
入手,考慮通過適當(dāng)?shù)淖冃?,轉(zhuǎn)化為學(xué)生們熟知的兩個距離公式。
在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是,實軸長為,焦距為。以深化對概念的理解。
(二)理解定義、解決問題
例2 (1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點P(-2,2),求|PA|
【設(shè)計意圖】
運用圓錐曲線定義中的數(shù)量關(guān)系進行轉(zhuǎn)化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學(xué)生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學(xué)生的辨析。
【學(xué)情預(yù)設(shè)】
根據(jù)以往的經(jīng)驗,多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關(guān)鍵在于能準(zhǔn)確寫出點A的軌跡,有了練習(xí)題1的鋪墊,這個問題對學(xué)生們來講就顯得頗為簡單,因此面對例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學(xué)生就無從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。
(三)自主探究、深化認識
如果時間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗的機會——
練習(xí):設(shè)點Q是圓C:(x1)2225|AB|的最小值。 3y225上動點,點A(1,0)是圓內(nèi)一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。
引申:若將點A移到圓C外,點M的軌跡會是什么?
【設(shè)計意圖】練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺,當(dāng)然,如果課堂上時間允許的話,
可借助“多媒體課件”,引導(dǎo)學(xué)生對自己的結(jié)論進行驗證。
【知識鏈接】
(一)圓錐曲線的定義
圓錐曲線的第一定義
圓錐曲線的統(tǒng)一定義
(二)圓錐曲線定義的應(yīng)用舉例
x2y2
雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P169
到右準(zhǔn)線的距離。
|PF1
高中數(shù)學(xué)優(yōu)秀教案第5篇PF2|為等軸雙曲線x2y2a2上一點,F(xiàn)1、F2為兩焦點,O為雙曲線的中心,求的|PO|
取值范圍。
在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標(biāo)。
x2y2
(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求259
|MA|+|MF|的最小值。
x2y211(2)已知A(,3)為一定點,F(xiàn)為雙曲線1的右焦點,M在雙曲線右支上移動,當(dāng)9272
1|AM
教學(xué)目標(biāo):
1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).
2.能識別和理解簡單的框圖的功能.
3. 能運用三種基本邏輯結(jié)構(gòu)設(shè)計流程圖以解決簡單的問題.
教學(xué)方法:
1. 通過模仿、操作、探索,經(jīng)歷設(shè)計流程圖表達求解問題的過程,加深對流程圖的感知.
2. 在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu).
教學(xué)過程:
一、問題情境
1.情境:
某鐵路客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為
其中(單位:)為行李的重量.
試給出計算費用(單位:元)的一個算法,并畫出流程圖.
二、學(xué)生活動
學(xué)生討論,教師引導(dǎo)學(xué)生進行表達.
解 算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運費.
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1-2-6.
在上述計費過程中,第二步進行了判斷.
三、建構(gòu)數(shù)學(xué)
1.選擇結(jié)構(gòu)的概念:
先根據(jù)條件作出判斷,再決定執(zhí)行哪一種
操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu).
如圖:虛線框內(nèi)是一個選擇結(jié)構(gòu),它包含一個判斷框,當(dāng)條件成立(或稱條件為“真”)時執(zhí)行,否則執(zhí)行.
2.說明:(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判
斷的不同情況進行不同的操作,這類問題的實現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計;
(2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;
(3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)
行,但或兩個框中可以有一個是空的,即不執(zhí)行任何操作;
(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個進入點和
兩個退出點.
3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?
【教學(xué)目標(biāo)】
1、知識與技能
(1)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個數(shù)列是否是等差數(shù)列:
(2)賬務(wù)等差數(shù)列的通項公式及其推導(dǎo)過程:
(3)會應(yīng)用等差數(shù)列通項公式解決簡單問題。
2、過程與方法
在定義的理解和通項公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3、情感、態(tài)度與價值觀
通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動,培養(yǎng)學(xué)生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好習(xí)慣。
【教學(xué)重點】
①等差數(shù)列的概念;
②等差數(shù)列的通項公式
【教學(xué)難點】
①理解等差數(shù)列“等差”的特點及通項公式的含義;
②等差數(shù)列的通項公式的推導(dǎo)過程。
【學(xué)情分析】
我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
【設(shè)計思路】
1、教法
①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性。
②分組討論法:有利于學(xué)生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性。
③講練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點,突破難點。
2、學(xué)法
引導(dǎo)學(xué)生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認識多元的推導(dǎo)思維方法。
【教學(xué)過程】
一、創(chuàng)設(shè)情境,引入新課
1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2、水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2、5m,最低降至5m、那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?
3、我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息。按照單利計算本利和的'公式是:本利和=本金×(1+利率×存期)、按活期存入10000元錢,年利率是0、72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?
教師:以上三個問題中的數(shù)蘊涵著三列數(shù)。
學(xué)生:
①0,5,10,15,20,25,…、
②18,15、5,13,10、5,8,5、5、
③10072,10144,10216,10288,10360、
(設(shè)置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學(xué)模型。通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識的自主性,培養(yǎng)學(xué)生的歸納能力。
二、觀察歸納,形成定義
①0,5,10,15,20,25,…、
②18,15、5,13,10、5,8,5、5、
③10072,10144,10216,10288,10360、
思考1上述數(shù)列有什么共同特點?
思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號語言嗎?
教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念。
學(xué)生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定。
教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號角度理解等差數(shù)列的定義。
(設(shè)計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓?。骸皬牡诙椘?,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準(zhǔn)確表達。)
三、舉一反三,鞏固定義
1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d、
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16、
教師出示題目,學(xué)生思考回答。教師訂正并強調(diào)求公差應(yīng)注意的問題。
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0、
(設(shè)計意圖:強化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用)、
2、思考4:設(shè)數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設(shè)計意圖:強化等差數(shù)列的證明定義法)
四、利用定義,導(dǎo)出通項
1、已知等差數(shù)列:8,5,2,…,求第200項?
2、已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示。根據(jù)學(xué)生在課堂上的具體情況進行具體評價、引導(dǎo),總結(jié)推導(dǎo)方法,體會歸納思想以及累加求通項的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法。
(設(shè)計意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力。學(xué)生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學(xué)生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識。鼓勵學(xué)生自主解答,培養(yǎng)學(xué)生運算能力)
五、應(yīng)用通項,解決問題
1、判斷100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?
2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an、
3、求等差數(shù)列3,7,11,…的第4項和第10項
教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況。
學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式
(設(shè)計意圖:主要是熟悉公式,使學(xué)生從中體會公式與方程之間的聯(lián)系。初步認識“基本量法”求解等差數(shù)列問題。)
七、歸納總結(jié):
1、一個定義:
等差數(shù)列的定義及定義表達式
2、一個公式:
等差數(shù)列的通項公式
3、二個應(yīng)用:
定義和通項公式的應(yīng)用
教師:讓學(xué)生思考整理,找?guī)讉€代表發(fā)言,最后教師給出補充
(設(shè)計意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念。)
【設(shè)計反思】
本設(shè)計從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性,增強學(xué)生學(xué)習(xí)數(shù)列的興趣。在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力。本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補充展開教學(xué),總結(jié)科學(xué)合理的知識體系,形成師生之間的良性互動,提高課堂教學(xué)效率。
教材分析:
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實驗教科書(人教B版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時,教學(xué)內(nèi)容是公式(三)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點坐標(biāo)之間關(guān)系,進而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。
教案背景:
通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點坐標(biāo)之間關(guān)系,進而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
教學(xué)方法:
以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。
教學(xué)目標(biāo):
借助單位圓探究誘導(dǎo)公式。
能正確運用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
教學(xué)重點:
誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。
教學(xué)難點:
誘導(dǎo)公式的應(yīng)用。
教學(xué)手段:
多媒體。
教學(xué)情景設(shè)計:
一.復(fù)習(xí)回顧:
1. 誘導(dǎo)公式(一)(二)。
2. 角 (終邊在一條直線上)
3. 思考:下列一組角有什么特征?( )能否用式子來表示?
二.新課:
已知 由
可知
而 (課件演示,學(xué)生發(fā)現(xiàn))
所以
于是可得: (三)
設(shè)計意圖:結(jié)合幾何畫板的演示利用同一點的坐標(biāo)變換,導(dǎo)出公式。
由公式(一)(三)可以看出,角 角 相等。即:
公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。
設(shè)計意圖:結(jié)合學(xué)過的公式(一)(二),發(fā)現(xiàn)特點,總結(jié)公式。
1. 練習(xí)
(1)
設(shè)計意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
(學(xué)生板演,老師點評,用彩色粉筆強調(diào)重點,引導(dǎo)學(xué)生總結(jié)公式。)
三.例題
例3:求下列各三角函數(shù)值:
(1)
(2)
(3)
(4)
例4:化簡
設(shè)計意圖:利用公式解決問題。
練習(xí):
(1)
(2) (學(xué)生板演,師生點評)
設(shè)計意圖:觀察公式特點,選擇公式解決問題。
四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問題、解決問題的能力,熟練應(yīng)用解決問題。
五.課后作業(yè):課后練習(xí)A、B組
六.課后反思與交流
很榮幸大家來聽我的課,通過這課,我學(xué)習(xí)到如下的東西:
1.要認真的研讀新課標(biāo),對教學(xué)的目標(biāo),重難點把握要到位
2.注意板書設(shè)計,注重細節(jié)的東西,語速需要改正
3.進一步的學(xué)習(xí)網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學(xué)生更容易操作
4.盡可能讓你的學(xué)生自主提出問題,自主的思考,能夠化被動學(xué)習(xí)為主動學(xué)習(xí),充分享受學(xué)習(xí)數(shù)學(xué)的樂趣
5.上課的生動化,形象化需要加強
聽課者評價:
1.評議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開設(shè)校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的,相信效果會更好的!重點不夠清晰,有引導(dǎo)數(shù)學(xué)時,最好值有個側(cè)重點;網(wǎng)絡(luò)設(shè)計上,網(wǎng)頁上公開的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來思考。
2.評議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。
3.評議者:平臺的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來,并形成自我的經(jīng)驗。
4.評議者:引導(dǎo)學(xué)生通過網(wǎng)絡(luò)進行探究。
建議:課件制作在線測評部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測試;多提問學(xué)生。
( 1)給學(xué)生思考的時間較長,語調(diào)相對平緩,總結(jié)時,給學(xué)生一些激勵的語言更好
( 2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時間思考
( 3)網(wǎng)絡(luò)平臺的使用,使得學(xué)生的參與度明顯提高,存在問題:1.公式對稱性的誘導(dǎo),點與點的對稱的誘導(dǎo),終邊的關(guān)系的誘導(dǎo),要進一步的修正;2.公式的概括要注意引導(dǎo)學(xué)生怎么用,學(xué)習(xí)這個誘導(dǎo)公式的作用
( 4)給學(xué)生答案,這個網(wǎng)頁要進一步的修正,答案能否不要一點就出來
( 5)1.板書設(shè)計要進一步的加強,2.語速相對是比較快的3.練習(xí)量比較少
( 6)讓學(xué)生多探究,課堂會更熱鬧
( 7)注意引入的過程要帶有目的,帶著問題來教學(xué),學(xué)生帶著問題來學(xué)習(xí)
( 8)教學(xué)模式相對簡單重復(fù)
( 9)思路較為清晰,規(guī)范化的推理
喜歡《高中數(shù)學(xué)教案優(yōu)秀教案設(shè)計思路(收藏十三篇)》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼兒園教案,同時,yjs21.com編輯還為您精選準(zhǔn)備了高中數(shù)學(xué)教案專題,希望您能喜歡!
相關(guān)推薦
評課是指評者對照課堂教學(xué)目標(biāo),對教師和學(xué)生在課堂教學(xué)中的活動以及由此所引起的變化進行價值的判斷。以下是小編為大家整理的優(yōu)秀評課稿,希望對大家有所幫助。初中語文優(yōu)秀教案設(shè)計評課語 篇1一、說教材本節(jié)是華師大編的高中《信息技術(shù)》第一冊的第二章的第三節(jié)《文件管理》。本節(jié)的學(xué)習(xí)內(nèi)容是文件與文件夾...
作為一位不辭辛勞的人民教師,常常需要準(zhǔn)備教學(xué)設(shè)計,教學(xué)設(shè)計一般包括教學(xué)目標(biāo)、教學(xué)重難點、教學(xué)方法、教學(xué)步驟與時間分配等環(huán)節(jié)。那么優(yōu)秀的教學(xué)設(shè)計是什么樣的呢?下面是小編為大家收集的高中數(shù)學(xué)教學(xué)設(shè)計,供大家參考借鑒,希望可以幫助到有需要的朋友。高中數(shù)學(xué)集合優(yōu)秀教案設(shè)計 篇11.1.2集合的表示方...
作為一名無私奉獻的老師,就難以避免地要準(zhǔn)備教案,教案是教學(xué)藍圖,可以有效提高教學(xué)效率。教案要怎么寫呢?以下是小編幫大家整理的高中數(shù)學(xué)優(yōu)秀教案(通用8篇),希望能夠幫助到大家。高中數(shù)學(xué)教案優(yōu)秀教案試講教案設(shè)計 篇11. 該生能以校規(guī)班規(guī)嚴(yán)格要求自己。有較強的集體榮譽感,學(xué)習(xí)態(tài)度認真,能吃苦,肯...
作為一名老師,可能需要進行教學(xué)設(shè)計編寫工作,借助教學(xué)設(shè)計可以提高教學(xué)效率和教學(xué)質(zhì)量。那么教學(xué)設(shè)計應(yīng)該怎么寫才合適呢?下面是小編為大家整理的高中數(shù)學(xué)優(yōu)秀教學(xué)設(shè)計,希望能夠幫助到大家。高中數(shù)學(xué)優(yōu)秀教學(xué)設(shè)計案例 篇1一、教學(xué)目標(biāo)【知識與技能】掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍?!?..
在教學(xué)工作者開展教學(xué)活動前,時常需要用到教案,教案是實施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。我們該怎么去寫教案呢?下面是小編精心整理的高中物理優(yōu)秀教案(精選10篇),僅供參考,歡迎大家閱讀。高中物理教學(xué)設(shè)計優(yōu)秀教案 篇1學(xué)生學(xué)習(xí)情況分析1、學(xué)生由于受日常經(jīng)驗的影響,對物體的下落運動普遍存...
最新更新
熱門欄目