勾股定理課件教案。
所有老師都必須在教課前準(zhǔn)備自己的教案和教學(xué)資源。為了能夠?qū)懗鐾昝赖慕贪负徒虒W(xué)資源,老師們都需要花費(fèi)相應(yīng)的心思與精力。在編寫(xiě)教案和課件時(shí),老師們尤其需要注意確保教學(xué)重點(diǎn)不會(huì)被忽略。是否也曾有過(guò)編寫(xiě)教案和課件時(shí)的苦惱呢?那么,本文的勾股定理課件教案為大家量身打造,希望能夠?yàn)槟峁└嗟膸椭?/p>
尊敬的各位領(lǐng)導(dǎo)、各位老師,大家好:
我叫李朝紅,是第十四中學(xué)的一名教師。我今天說(shuō)課的題目《勾股定理的逆定理》,選自人教課標(biāo)實(shí)驗(yàn)版教科書(shū)數(shù)學(xué)八年級(jí)下冊(cè)第十八章第二節(jié),本節(jié)課共分兩個(gè)課時(shí),我今天分析的是第一個(gè)課時(shí),下面我將從教材、教法學(xué)法、教學(xué)過(guò)程、教學(xué)反思四個(gè)方面進(jìn)行闡述。
一、教材分析
1、教材的地位和作用:
在學(xué)習(xí)本節(jié)課之前學(xué)生已經(jīng)學(xué)習(xí)了勾股定理,全等三角形的判定等相關(guān)知識(shí),為本節(jié)課的學(xué)習(xí)打好了基礎(chǔ),學(xué)習(xí)好本節(jié)課不但可以鞏固學(xué)生已有的知識(shí),而且為后面利用勾股定理的逆定理判斷一個(gè)三角形是否直角三角形等相關(guān)知識(shí)的學(xué)習(xí)做好了鋪墊。
2、教學(xué)目標(biāo)
教學(xué)目標(biāo)支配著教學(xué)過(guò)程,教學(xué)目標(biāo)的制定和落實(shí)是實(shí)施課堂教學(xué)的關(guān)鍵??紤]到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及本班學(xué)生的實(shí)際情況,我制定了如下教學(xué)目標(biāo)
知識(shí)與技能:掌握勾股定理的逆定理,會(huì)用勾股定理的逆定理判斷一個(gè)三角形是否直角三角形。
過(guò)程與方法:通過(guò)對(duì)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成
過(guò)程,體會(huì)數(shù)形結(jié)合和由特殊到一般的數(shù)學(xué)思想,進(jìn)一步提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
情感、態(tài)度、價(jià)值觀:在探究勾股定理的逆定理的活動(dòng)中,滲透與他人交流、合作的意識(shí)和探究精神.
3、重點(diǎn)難點(diǎn)
本著課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,我確立了如下的教學(xué)重、難點(diǎn)
重點(diǎn):理解并掌握勾股定理的逆定理,并會(huì)應(yīng)用。
難點(diǎn):理解勾股定理的逆定理的推導(dǎo)。
二、教法學(xué)法分析
八年級(jí)學(xué)生的特點(diǎn)是思維比較活躍,喜歡發(fā)表自己的見(jiàn)解,善于進(jìn)行小組合作學(xué)習(xí),所以我將采用啟發(fā)教學(xué)與誘導(dǎo)教學(xué)相結(jié)合的方法,老師為主導(dǎo),學(xué)生為主體,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,讓學(xué)生動(dòng)手操作,動(dòng)腦思考,動(dòng)口表達(dá),積極參與到本節(jié)課的教學(xué)過(guò)程中來(lái),在鍛煉學(xué)生思考、觀察、實(shí)踐能力的同時(shí),使其科學(xué)文化修養(yǎng)與思想道德修養(yǎng)進(jìn)一步提升。
教法學(xué)法分析完畢,我再來(lái)分析一下教學(xué)過(guò)程,這是我本次說(shuō)課的重點(diǎn)。
三、教學(xué)過(guò)程分析:
(一)創(chuàng)設(shè)情景,引入新課
1、展示圖片:古埃及人制作直角的方法
2、讓學(xué)生試一試用一根繩子確定直角
設(shè)計(jì)意圖:通過(guò)古埃及人制作直角的方法,提出讓學(xué)生動(dòng)手操作,進(jìn)而使學(xué)生產(chǎn)生好奇心:“這樣就能確定直角嗎”,激發(fā)學(xué)生的求知欲,點(diǎn)燃其學(xué)習(xí)的激情,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性 ,同時(shí)也使學(xué)生感受到幾何來(lái)源于生活,服務(wù)于生活的道理,體會(huì)數(shù)學(xué)的價(jià)值。
(二)動(dòng)手檢測(cè),提出假設(shè)
在本環(huán)節(jié)中通過(guò)情境中的問(wèn)題,引導(dǎo)學(xué)生分別用(1)6cm,8cm,10cm (2)5 cm、12cm、13cm (3)3.5 cm 、12cm、 12.5 cm
上面三組線段為邊畫(huà)出三角形,猜測(cè)驗(yàn)證出其形狀。
再引導(dǎo)啟發(fā)誘導(dǎo)學(xué)生從上面的活動(dòng)中歸納思考:如果一個(gè)三角形的三邊a,b,c滿足a2+b2=c2,那這個(gè)三角形是直角三角形嗎?在整個(gè)過(guò)程的活動(dòng)中,盡量給學(xué)生足夠的時(shí)間和空間,以平等身份參與到學(xué)生活動(dòng)中來(lái),對(duì)其實(shí)踐活動(dòng)予以指導(dǎo)。讓學(xué)生通過(guò)作圖、測(cè)量等實(shí)踐活動(dòng),給出合理的假設(shè)與猜測(cè)。整個(gè)環(huán)節(jié)通過(guò)設(shè)置的問(wèn)題串,引導(dǎo)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口相結(jié)合,激活學(xué)生的思維,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度,合理的推測(cè)能力,嚴(yán)密的邏輯思維能力和靈活的動(dòng)手實(shí)踐能力。
(三) 探索歸納,證明假設(shè):
勾股定理逆定理的證明與以往不同,需要構(gòu)造直角三角形才能完成,如何構(gòu)造直角三角形就成為解決問(wèn)題的關(guān)鍵。如果直接將問(wèn)題拋給學(xué)生證明,他們定會(huì)無(wú)從下手,所以為了解決這一問(wèn)題,突破這個(gè)難點(diǎn),我先
1、 讓學(xué)生畫(huà)了一個(gè)三邊長(zhǎng)度為3cm,4cm,5cm的三角形和一個(gè)以3cm,4cm為直角邊的直角三角形,剪下其中的直角三角形放在另一個(gè)三角形上看出現(xiàn)了什么情況?并請(qǐng)學(xué)生簡(jiǎn)單說(shuō)明理由。通過(guò)操作驗(yàn)證兩三角形全等,從而顯示了符合條件的三角形是直角三角形,
2、 然后在黑板上畫(huà)一個(gè)三邊長(zhǎng)為a、b、c,且滿足 a2+b2=c2的△ABC,與一個(gè)以a、b為直角邊的直角三角形,讓學(xué)生觀察它們之間有什么聯(lián)系呢?你們又是如何想的?試說(shuō)明理由。通過(guò)推理證明得出勾股定理的逆定理。
在這個(gè)過(guò)程中,首先讓學(xué)生從特殊的實(shí)例中動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的判定,進(jìn)而由特殊到一般發(fā)現(xiàn)三邊長(zhǎng)為a、b、c,且滿足 a2+b2=c2的△ABC與以a、b為直角邊的直角三角形的關(guān)系。
設(shè)計(jì)意圖:讓學(xué)生從特殊的實(shí)例動(dòng)手到證明,進(jìn)而由特殊到一般,順利地利用構(gòu)建法證明了勾股定理的逆定理,整個(gè)過(guò)程自然、無(wú)神秘感,實(shí)現(xiàn)從直觀印象向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了“操作——觀察——猜測(cè)——探索——論證”的過(guò)程,體驗(yàn)了“特殊到一般,個(gè)性到共性”的偉大數(shù)學(xué)思想在實(shí)際中的應(yīng)用。
這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過(guò)程中享受到自我創(chuàng)造的快樂(lè)。
(四)學(xué)以致用、鞏固提升
本著由淺入深的原則,安排了三個(gè)題。第一題比較簡(jiǎn)單,判斷由a,b,c組成的三角形是不是直角三角形?(1)a=15 b=8 c=17 (2)a=13 b=15 c=14.讓學(xué)生仿照課本上的例題,獨(dú)立完成,教師提醒書(shū)寫(xiě)格式。并說(shuō)明像15,8,17能夠成為直角三角形的三條邊長(zhǎng)的正整數(shù),我們稱(chēng)為勾股數(shù)。第二題我改變題的形式,把一些符合a+b=c的三角形放入網(wǎng)格中讓學(xué)生運(yùn)用勾股定理及其逆定理來(lái)說(shuō)明理由。第三題是求一個(gè)不規(guī)則四邊形的面積,讓學(xué)生思考如何添加輔助線,把它分成一個(gè)直角三角形和一個(gè)非直角但能判定是直角的三角形,讓學(xué)生運(yùn)用勾股定理及其逆定理證明并求解。
設(shè)計(jì)意圖:采用啟發(fā)教學(xué)與誘導(dǎo)教學(xué)方法相結(jié)合的方法分層練習(xí),由淺入深地逐步提高學(xué)生解決實(shí)際問(wèn)題的能力,達(dá)到鞏固知識(shí),學(xué)以致用的目的
(五)回顧總結(jié),強(qiáng)化認(rèn)知
課堂小結(jié)以填空體的形式檢測(cè)、歸納總結(jié)
設(shè)計(jì)意圖:讓學(xué)生以填空題的形式進(jìn)行總結(jié),不僅能夠起到檢測(cè)的目的,而且?guī)椭鷮W(xué)生理清知識(shí)脈絡(luò),起到重點(diǎn)強(qiáng)調(diào),產(chǎn)生高度重視的效果。
(六)作業(yè)布置
教材33頁(yè)練習(xí)
設(shè)計(jì)意圖:加強(qiáng)學(xué)生對(duì)勾股定理逆定理的理解,使學(xué)生的練習(xí)范圍拓展到多個(gè)題型。
教學(xué)反思:本節(jié)課以學(xué)生為主體、教師為主導(dǎo),通過(guò)啟發(fā)與誘導(dǎo),使學(xué)生動(dòng)手操作、動(dòng)腦思考、動(dòng)口表達(dá),讓學(xué)生在實(shí)踐與探究中發(fā)揮自我,充分調(diào)動(dòng)了學(xué)生的自主性與積極性,整個(gè)過(guò)程注重了學(xué)生課上知識(shí)的形成與鞏固,以及學(xué)生各方面素質(zhì)的培養(yǎng)??傊竟?jié)課的知識(shí)目標(biāo)基本達(dá)成,能力目標(biāo)基本實(shí)現(xiàn),情感目標(biāo)基本落實(shí)。
以上是我對(duì)本節(jié)課的理解,還望各位老師指正。
一、 說(shuō)教材分析
1. 教材的地位和作用
華師大版八年級(jí)上直角三角形三邊關(guān)系是學(xué)生在學(xué)習(xí)數(shù)的開(kāi)方和整式的乘除后的一段內(nèi)容,它是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它揭示了一個(gè)直角三角形三條邊之間的數(shù)量關(guān)系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來(lái),在數(shù)學(xué)的發(fā)展中起著重要的作用。
因此他的教育教學(xué)價(jià)值就具體體現(xiàn)在如下三維目標(biāo)中:
知識(shí)與技能:
1、經(jīng)歷勾股定理的探索過(guò)程,體會(huì)數(shù)形結(jié)合思想。
2、理解直角三角形三邊的關(guān)系,會(huì)應(yīng)用勾股定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
過(guò)程與方法:
1、經(jīng)歷觀察—猜想—?dú)w納—驗(yàn)證等一系列過(guò)程,體會(huì)數(shù)學(xué)定理發(fā)現(xiàn)的過(guò)程,由特殊到一般的解決問(wèn)題的方法。
2、在觀察、猜想、歸納、驗(yàn)證等過(guò)程中培養(yǎng)學(xué)生的數(shù)學(xué)語(yǔ)言表達(dá)能力和初步的邏輯推理能力。
情感、態(tài)度與價(jià)值觀:
1、通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣。
2、在探究活動(dòng)中,體驗(yàn)解決問(wèn)題方法的多樣性,培養(yǎng)學(xué)生的合作意識(shí)和然所精神。
3、讓學(xué)生通過(guò)動(dòng)手實(shí)踐,增強(qiáng)探究和創(chuàng)新意識(shí),體驗(yàn)研究過(guò)程,學(xué)習(xí)研究方法,逐步養(yǎng)成一種積極的生動(dòng)的,自助合作探究的學(xué)習(xí)方式。
由于八年級(jí)的學(xué)生具有一定分析能力,但活動(dòng)經(jīng)驗(yàn)不足,所以
本節(jié)課教學(xué)重點(diǎn):勾股定理的探索過(guò)程,并掌握和運(yùn)用它。
教學(xué)難點(diǎn):分割,補(bǔ)全法證面積相等,探索勾股定理。
二、說(shuō)教法學(xué)法分析:
要上好一堂課,就是要把所確定的三維目標(biāo)有機(jī)地溶入到教學(xué)過(guò)程中去,所以我采用了“引導(dǎo)探究式”的教學(xué)方法:
先從學(xué)生熟知的生活實(shí)例出發(fā),以生活實(shí)踐為依托,將生活圖形數(shù)學(xué)化,然后由特殊到一般地提出問(wèn)題,引導(dǎo)學(xué)生在自主探究與合作交流中解決問(wèn)題,同時(shí)也真正體現(xiàn)了數(shù)學(xué)課堂是學(xué)生自己的課堂。
學(xué)法:我想通過(guò)“操作+思考”這樣方式,有效地讓學(xué)生在動(dòng)手、動(dòng)腦、自主探究與合作交流中來(lái)發(fā)現(xiàn)新知,同時(shí)讓學(xué)生感悟到:學(xué)習(xí)任何知識(shí)的最好方法就是自己去探究。
三、 說(shuō)教學(xué)程序設(shè)計(jì)
1、 故事引入新課,激起學(xué)生學(xué)習(xí)興趣。
牛頓,瓦特的故事,讓學(xué)生科學(xué)家的偉大成就多數(shù)都是在看似平淡無(wú)奇的現(xiàn)象中發(fā)現(xiàn)和研究出來(lái)的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來(lái)。畢達(dá)哥拉斯的發(fā)現(xiàn)引入新課。
2、探索新知
在這里我設(shè)計(jì)了四個(gè)內(nèi)容:
①探索等腰直角三角形三邊的關(guān)系
②邊長(zhǎng)為3、4、5為邊長(zhǎng)的直角三角形的三邊關(guān)系
③學(xué)生畫(huà)兩直角邊為2,6的直角三角形,探索三邊的關(guān)系
④三邊為a、b、c的直角三角形的三邊的關(guān)系,(證明)
⑤勾股定理歷史介紹,讓學(xué)生體會(huì)勾股定理的文化價(jià)值。
體現(xiàn)從特殊到一般的發(fā)現(xiàn)問(wèn)題的過(guò)程。
3、新知運(yùn)用:
①舉出勾股定理在生活中的運(yùn)用。(老師講解勾股定理在生活中的運(yùn)用)
②在直角三角形中,已知∠ B=90° ,AB=6,BC=8,求AC.
③要做一個(gè)人字梯,要求人字梯的跨度為6米,高為4米,請(qǐng)問(wèn)怎么做?
④如圖,學(xué)校有一塊長(zhǎng)方形花鋪,有極少數(shù)人為了避開(kāi)拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”.他們僅僅少走了 步路(假設(shè)2步為1米),卻踩傷了花草.
4、小結(jié)本課:
學(xué)完了這節(jié)課,你有什么收獲?
老師補(bǔ)充:科學(xué)家的偉大成就多數(shù)都是在看似平淡無(wú)奇的現(xiàn)象中發(fā)現(xiàn)和研究出來(lái)的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來(lái)。數(shù)學(xué)來(lái)源于實(shí)踐,而又應(yīng)用于實(shí)踐。解決一個(gè)問(wèn)題的方法是多樣性的,我們要多思考。 勾股定是數(shù)學(xué)史上的明珠,證明方法有很多種,我們將在下一節(jié)課學(xué)習(xí)它。
反思:
教學(xué)設(shè)計(jì)主要是體現(xiàn)從特殊到一般的知識(shí)形成過(guò)程,探索問(wèn)題的設(shè)計(jì)上有點(diǎn)難,第二個(gè)問(wèn)題應(yīng)加個(gè)3,3為直角邊的等腰直角三角形讓學(xué)生分割或者補(bǔ)全,這樣過(guò)度,降低3,4為直角邊的探索探索;在2,6為直角邊時(shí),這個(gè)問(wèn)題可以不用設(shè)計(jì)進(jìn)去,就為后面的練習(xí)留足時(shí)間。探索時(shí)間較長(zhǎng),整個(gè)課程推行進(jìn)度較慢,練習(xí)較少。
對(duì)學(xué)生的啟發(fā)不夠,對(duì)學(xué)生的關(guān)注不夠,學(xué)生對(duì)問(wèn)題的思考不能及時(shí)想出來(lái),沒(méi)有及時(shí)很好的引導(dǎo),啟發(fā),應(yīng)讓學(xué)生多一些思考的空間,并及時(shí)交給思考的方法。學(xué)生反應(yīng)不是太好,能力差,也或許是因?yàn)閱?wèn)題設(shè)計(jì)的較難,沒(méi)有很好的體現(xiàn)出探究。
預(yù)期的目標(biāo)沒(méi)有很好的達(dá)成,學(xué)生雖然掌握了勾股定理,但探索熱情沒(méi)有點(diǎn)燃,思維能力,動(dòng)手能力,探索精神沒(méi)有很好的得到發(fā)展。
一、學(xué)生知識(shí)狀況分析
本節(jié)將利用勾股定理及其逆定理解決一些具體的實(shí)際問(wèn)題,其中需要學(xué)生了解空間圖形、對(duì)一些空間圖形進(jìn)行展開(kāi)、折疊等活動(dòng)。學(xué)生在學(xué)習(xí)七年級(jí)上第一章時(shí)對(duì)生活中的立體圖形已經(jīng)有了一定的認(rèn)識(shí),并從事過(guò)相應(yīng)的實(shí)踐活動(dòng),因而學(xué)生已經(jīng)具備解決本課問(wèn)題所需的知識(shí)基礎(chǔ)和活動(dòng)經(jīng)驗(yàn)基礎(chǔ)。
二、教學(xué)任務(wù)分析
本節(jié)是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書(shū)八年級(jí)(上)第一章《勾股定理》第3節(jié)。具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題。當(dāng)然,在這些具體問(wèn)題的解決過(guò)程中,需要經(jīng)歷幾何圖形的抽象過(guò)程,需要借助觀察、操作等實(shí)踐活動(dòng),這些都有助于發(fā)展學(xué)生的分析問(wèn)題、解決問(wèn)題能力和應(yīng)用意識(shí);一些探究活動(dòng)具體一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力。
三、本節(jié)課的教學(xué)目標(biāo)是:
1.通過(guò)觀察圖形,探索圖形間的關(guān)系,發(fā)展學(xué)生的空間觀念.
2.在將實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題的過(guò)程中,提高分析問(wèn)題、解決問(wèn)題的能力及滲透數(shù)學(xué)建模的思想.
3.在利用勾股定理解決實(shí)際問(wèn)題的過(guò)程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性.
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問(wèn)題是本節(jié)課的重點(diǎn)也是難點(diǎn).
四、教法學(xué)法
1.教學(xué)方法
引導(dǎo)—探究—?dú)w納
本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)教強(qiáng),思維活躍,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):
(1)從創(chuàng)設(shè)問(wèn)題情景入手,通過(guò)知識(shí)再現(xiàn),孕育教學(xué)過(guò)程;
(2)從學(xué)生活動(dòng)出發(fā),順勢(shì)教學(xué)過(guò)程;
(3)利用探索研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程.
2.課前準(zhǔn)備
教具:教材、電腦、多媒體課件.
學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.
五、教學(xué)過(guò)程分析
本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè).
1.3勾股定理的應(yīng)用:課后練習(xí)
一、問(wèn)題引入:
1、勾股定理:直角三角形兩直角邊的________等于________。如果用a,b和c表示直角三角形的兩直角邊和斜邊,那么________。
2、勾股定理逆定理:如果三角形三邊長(zhǎng)a,b,c滿足________,那么這個(gè)三角形是直角三角形
1.3勾股定理的應(yīng)用:同步檢測(cè)
1.為迎接新年的到來(lái),同學(xué)們做了許多拉花布置教室,準(zhǔn)備召開(kāi)新年晚會(huì),小劉搬來(lái)一架高2.5米的木梯,準(zhǔn)備把拉花掛到2.4米高的墻上,則梯腳與墻角距離應(yīng)為( )
A.0.7米B.0.8米C.0.9米D.1.0米
2.小華和小剛兄弟兩個(gè)同時(shí)從家去同一所學(xué)校上學(xué),速度都是每分鐘走50米.小華從家到學(xué)校走直線用了10分鐘,而小剛從家出發(fā)先去找小明再到學(xué)校(均走直線),小剛到小明家用了6分鐘,小明家到學(xué)校用了8分鐘,小剛上學(xué)走了個(gè)( )
A.銳角彎B.鈍角彎C.直角彎D.不能確定
3.如圖,是一個(gè)圓柱形飲料罐,底面半徑是5,高是12,上底面中心有一個(gè)小圓孔,則一條到達(dá)底部的直吸管在罐內(nèi)部分a的長(zhǎng)度(罐壁的厚度和小圓孔的大小忽略不計(jì))范圍是( )
A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15
4.一個(gè)木工師傅測(cè)量了一個(gè)等腰三角形木板的腰、底邊和高的長(zhǎng),但他把這三個(gè)數(shù)據(jù)與其它的數(shù)據(jù)弄混了,請(qǐng)你幫助他找出來(lái),是第( )組.
A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4
各位考官,大家好,我是X號(hào)考生,今天我說(shuō)課的內(nèi)容是《勾股定理的逆定理》。根據(jù)新課程標(biāo)準(zhǔn),我將以教什么,怎么教,為什么這么教為思路開(kāi)展我的說(shuō)課,首先,我先來(lái)說(shuō)說(shuō)我對(duì)教材的理解。
教材分析是上好一堂課的前提條件,在上好一堂課之前,我首先談一談對(duì)教材的理解。
一、說(shuō)教材
“勾股定理的逆定理”一節(jié)?是在上節(jié)“勾股定理”之后繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化。勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問(wèn)題的思想,為將來(lái)學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。
二、說(shuō)學(xué)情
中學(xué)生心理學(xué)研究指出,初中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗(yàn)型逐步向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨著迅速發(fā)展。學(xué)生此前學(xué)習(xí)了三角形有關(guān)的知識(shí),掌握了直角三角形的性質(zhì)和勾股定理,學(xué)生在此基礎(chǔ)上學(xué)習(xí)勾股定理的逆定理可以加深理解。
三、說(shuō)教學(xué)目標(biāo)
根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容結(jié)合學(xué)生實(shí)際我確定了如下教學(xué)目標(biāo)。
【知識(shí)與技能】
理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形。
【過(guò)程與方法】
通過(guò)勾股定理的逆定理的證明,體會(huì)數(shù)與形結(jié)合方法在問(wèn)題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問(wèn)題。
【情感態(tài)度與價(jià)值觀】
通過(guò)一系列富有探究性的問(wèn)題,滲透與他人交流、合作的意識(shí)和探究精神。
四、說(shuō)教學(xué)重難點(diǎn)
重點(diǎn):勾股定理逆定理的應(yīng)用;
難點(diǎn):探究勾股定理逆定理的證明過(guò)程。
五、說(shuō)教學(xué)方法
科學(xué)合理的教學(xué)方法能使教學(xué)效果事半功倍,達(dá)到教與學(xué)的和諧完美統(tǒng)一?;诖耍覝?zhǔn)備采用的教法是講練結(jié)合法,小組討論法。
六、說(shuō)教學(xué)過(guò)程
(一)導(dǎo)入新課
在導(dǎo)入新課環(huán)節(jié),我會(huì)采用溫故知新的導(dǎo)入方法,先讓學(xué)生回顧勾股定理有關(guān)知識(shí),并引入本節(jié)課的課題——勾股定理逆定理。
【設(shè)計(jì)意圖】通過(guò)復(fù)習(xí)回顧能很好地將新舊知識(shí)聯(lián)系起來(lái),使學(xué)生形成對(duì)知識(shí)的系統(tǒng)的認(rèn)識(shí)。并且由舊知開(kāi)始,能很好地幫助學(xué)生克服畏難情緒。
(二)探究新知
一開(kāi)課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問(wèn)題去提示本節(jié)課的探究宗旨,演示古代埃及人把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后便得到一個(gè)直角三角形這是為什么?這個(gè)問(wèn)題一出現(xiàn),馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來(lái)創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說(shuō)明了幾何知識(shí)來(lái)源于實(shí)踐不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。
因?yàn)閹缀蝸?lái)源于現(xiàn)實(shí)生活,對(duì)初二學(xué)生來(lái)說(shuō)選擇適當(dāng)?shù)臅r(shí)機(jī)讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開(kāi)始學(xué)習(xí)可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過(guò)動(dòng)手折紙?jiān)诰唧w的實(shí)踐中觀察滿足條件的三角形直觀感覺(jué)上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。
這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見(jiàn),它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過(guò)操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
接下來(lái)就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等順利作出了輔助直角三角形,整個(gè)證明過(guò)程自然無(wú)神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測(cè)——探索——論證的全過(guò)程。這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理?因而使學(xué)生感到自然、親切。學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高,使學(xué)生確實(shí)在學(xué)習(xí)過(guò)程中享受到自我創(chuàng)造的快樂(lè)。
在同學(xué)們完成證明之后,可讓他們對(duì)照課本把證明過(guò)程嚴(yán)格的閱讀一遍充分發(fā)揮教科書(shū)的作用養(yǎng)成學(xué)生看書(shū)的習(xí)慣這也是在培養(yǎng)學(xué)生的自學(xué)能力。
(三)鞏固提高
本著由淺入深的原則安排了三個(gè)題目。演示第一題比較簡(jiǎn)單(判斷下列三條線段組成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)讓學(xué)生口答讓所有的學(xué)生都能完成。
第二題則進(jìn)了一層用字母代替了數(shù)字,繞了一個(gè)彎,既可以檢查本課知識(shí)又可以提高靈活運(yùn)用以往知識(shí)的能力。
思維提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說(shuō)、練結(jié)合的方法,教師通過(guò)觀察、提問(wèn)、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過(guò)程,隨時(shí)反饋調(diào)節(jié)教法同時(shí)注意加強(qiáng)有針對(duì)性的個(gè)別指導(dǎo)把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來(lái)。
(四)小結(jié)作業(yè)
在小結(jié)環(huán)節(jié),我會(huì)隨機(jī)詢問(wèn)學(xué)生勾股定理的逆定理是什么?如果判斷一個(gè)三角形是不是直角三角形,以及勾股定理的逆定理的應(yīng)用需要注意點(diǎn)什么等問(wèn)題,先讓學(xué)生歸納本節(jié)知識(shí)和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法培養(yǎng)能力方面比如輔助線的添法。
設(shè)計(jì)意圖:這樣設(shè)計(jì)可以幫助學(xué)生以反思的形式回憶本節(jié)課所學(xué)的知識(shí),加深對(duì)知識(shí)的印象,有利于學(xué)生良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣的養(yǎng)成。
由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。第一組是基礎(chǔ)題,我會(huì)用ppt出示關(guān)于勾股定理的逆定理的計(jì)算題目,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二組是開(kāi)放性題目,讓學(xué)生課后思考總結(jié)一下判定一個(gè)三角形是直角三角形的方法。
教學(xué)課題:
勾股定理的應(yīng)用
教學(xué)時(shí)間(日期、課時(shí)):
教材分析:
學(xué)情分析:
教學(xué)目標(biāo):
能運(yùn)用勾股定理及直角三角形的判定條件解決實(shí)際問(wèn)題.
在運(yùn)用勾股定理解決實(shí)際問(wèn)題的過(guò)程中,感受數(shù)學(xué)的“轉(zhuǎn)化” 思想(把解斜三角形問(wèn)題轉(zhuǎn)化為解直角三角形的問(wèn)題),進(jìn)一步發(fā)展有條理思考和有條理表達(dá)的能力,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.
教學(xué)準(zhǔn)備
《數(shù)學(xué)學(xué)與練》
集體備課意見(jiàn)和主要參考資料
頁(yè)邊批注
教學(xué)過(guò)程
一.新課導(dǎo)入
本課時(shí)的教學(xué)內(nèi)容是勾股定理在實(shí)際中的應(yīng)用。除課本提供的情境外,教學(xué)中可以根據(jù)實(shí)際情況另行設(shè)計(jì)一些具體情境,也利用課本提供的素材組織數(shù)學(xué)活動(dòng)。比如,把課本例2改編為開(kāi)放式的問(wèn)題情境:
一架長(zhǎng)為10m的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8m.如果梯子的頂端下滑0.5m,你認(rèn)為梯子的底端會(huì)發(fā)生什么變化?與同學(xué)交流.
創(chuàng)設(shè)學(xué)生身邊的問(wèn)題情境,為每一個(gè)學(xué)生提供探索的空間,有利于發(fā)揮學(xué)生的主體性;這樣的問(wèn)題學(xué)生常常會(huì)從自己的生活經(jīng)驗(yàn)出發(fā),產(chǎn)生不同的思考方法和結(jié)論(教學(xué)中學(xué)生可能的結(jié)論有:
底端也滑動(dòng)0.5m;如果梯子的頂端滑到地面上,梯子的頂端則滑動(dòng)8m,估計(jì)梯子底端的滑動(dòng)小于8m,所以梯子的頂端下滑0.5m,它的底端的滑動(dòng)小于0.5m;構(gòu)造直角三角形,運(yùn)用勾股定理計(jì)算梯子滑動(dòng)前、后底端到墻的垂直距離的差,得出梯子底端滑動(dòng)約0.61m的結(jié)論等)。
通過(guò)與同學(xué)交流,完善各自的想法,有利于學(xué)生主動(dòng)地把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,從中感受用數(shù)學(xué)的眼光審視客觀世界的樂(lè)趣.
二.新課講授
問(wèn)題一在上面的情境中,如果梯子的頂端下滑1m,那么梯子的`底端滑動(dòng)多少米?
組織學(xué)生嘗試用勾股定理解決問(wèn)題,對(duì)有困難的學(xué)生教師給予及時(shí)的幫助和指導(dǎo).
問(wèn)題二從上面所獲得的信息中,你對(duì)梯子下滑的變化過(guò)程有進(jìn)一步的思考嗎?與同學(xué)交流.
設(shè)計(jì)問(wèn)題二促使學(xué)生能主動(dòng)積極地從數(shù)學(xué)的角度思考實(shí)際問(wèn)題.教學(xué)中學(xué)生可能會(huì)有多種思考.比如,
①這個(gè)變化過(guò)程中,梯子底端滑動(dòng)的距離總比頂端下滑的距離大;
②因?yàn)樘葑禹敹讼禄降孛鏁r(shí),頂端下滑了8m,而底端只滑動(dòng)4m,所以這個(gè)變化過(guò)程中,梯子底端滑動(dòng)的距離不一定比頂端下滑的距離大;
③由勾股數(shù)可知,當(dāng)梯子頂端下滑到離地面的垂直距離為6m,即頂端下滑2m時(shí),底端到墻的垂直距離是8m,即底端電滑動(dòng)2m等。
教學(xué)中不要把尋找規(guī)律作為這個(gè)探索活動(dòng)的目標(biāo),應(yīng)讓學(xué)生進(jìn)行充分的交流,使學(xué)生逐步學(xué)會(huì)運(yùn)用數(shù)學(xué)的眼光去審視客觀世界,從不同的角度去思考問(wèn)題,獲得一些研究問(wèn)題的經(jīng)驗(yàn)和方法.
3.例題教學(xué)
課本的例1是勾股定理的簡(jiǎn)單應(yīng)用,教學(xué)中可根據(jù)教學(xué)的實(shí)際情況補(bǔ)充一些實(shí)際應(yīng)用問(wèn)題,把課本習(xí)題2.7第4題作為補(bǔ)充例題.通過(guò)這個(gè)問(wèn)題的討論,把“32+b2=c2”看作一個(gè)方程,設(shè)折斷處離地面x尺,依據(jù)問(wèn)題給出的條件就把它轉(zhuǎn)化為熟悉的會(huì)解的一元二次方程32+x2=(10—x)2,從中可以讓學(xué)生感受數(shù)學(xué)的“轉(zhuǎn)化”思想,進(jìn)一步了解勾股定理的悠久歷史和我國(guó)古代人民的聰明才智.
三.鞏固練習(xí)
1.甲、乙兩人同時(shí)從同一地點(diǎn)出發(fā),甲往東走了4km,乙往南走了6km,這時(shí)甲、乙兩人相距__________km.
2.如圖,一圓柱高8cm,底面半徑2cm,一只螞蟻從點(diǎn)A爬到點(diǎn)B處吃食,要爬行的最短路程(取3)是().
(A)20cm(B)10cm(C)14cm(D)無(wú)法確定
3.如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m.求這塊草坪的面積.
四.小結(jié)
我們知道勾股定理揭示了直角三角形的三邊之間的數(shù)量關(guān)系,已知直角三角形中的任意兩邊就可以依據(jù)勾股定理求出第三邊.從應(yīng)用勾股定理解決實(shí)際問(wèn)題中,我們進(jìn)一步認(rèn)識(shí)到把直角三角形中三邊關(guān)系“a2+b2=c2”看成一個(gè)方程,只要依據(jù)問(wèn)題的條件把它轉(zhuǎn)化為我們會(huì)解的方程,就把解實(shí)際問(wèn)題轉(zhuǎn)化為解方程.
一、 教材分析
(一)教材所處的地位
這節(jié)課是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(北師大)八年級(jí)第一章第一節(jié)探索勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。
(二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:
1、 能說(shuō)出勾股定理的內(nèi)容。
2、 會(huì)初步運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和實(shí)際運(yùn)用。
3、 在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。
4、 通過(guò)介紹勾股定理在中國(guó)古代的研究,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。
(三)本課的教學(xué)重點(diǎn):探索勾股定理
本課的教學(xué)難點(diǎn):以直角三角形為邊的正方形面積的計(jì)算。
二、教法與學(xué)法分析:
教法分析:針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問(wèn)題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問(wèn)題—猜想結(jié)論—實(shí)驗(yàn)操作—?dú)w納總結(jié)—問(wèn)題解決—課堂小結(jié)—布置作業(yè)七部分。
學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問(wèn)題,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
三、 教學(xué)過(guò)程設(shè)計(jì):
(一)提出問(wèn)題:
首先創(chuàng)設(shè)這樣一個(gè)問(wèn)題情境:強(qiáng)大的臺(tái)風(fēng)使得一座高壓線塔在離地面9米處斷裂,塔頂落在離塔底部12米處,高壓線塔折斷之前有多高?
問(wèn)題設(shè)計(jì)具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,也就是“已知一直角三角形的兩邊,如何求第三邊?” 的問(wèn)題。學(xué)生會(huì)感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實(shí)際問(wèn)題為切入點(diǎn)引入新課,不僅自然,而且反映了數(shù)學(xué)來(lái)源于實(shí)際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認(rèn)識(shí)的基本觀點(diǎn),同時(shí)也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,而且解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程。
(二)猜想結(jié)論。
教師用計(jì)算機(jī)演示:
(1)在△ABC中,∠ACB=90°,∠A,∠B,∠C所對(duì)邊分別為a,b和c,使△ABC運(yùn)動(dòng)起來(lái),但始終保持∠ACB=90°,如拖動(dòng)A點(diǎn)或B點(diǎn)改變a,b的長(zhǎng)度來(lái)拖動(dòng)AB邊繞任一點(diǎn)旋轉(zhuǎn)△ACB等。
(2)在以上過(guò)程中,始終測(cè)算 ,各取以上典型運(yùn)動(dòng)的某一兩個(gè)狀態(tài)的測(cè)算值列成表格,讓學(xué)生觀察三個(gè)數(shù)之間有何數(shù)量關(guān)系,得出猜想。
(三)實(shí)驗(yàn)操作:
1、投影課本圖1—2的有關(guān)直角三角形問(wèn)題,讓學(xué)生計(jì)算正方形A,B,C的面積,學(xué)生可能有不同的方法,不管是通過(guò)直接數(shù)小方格的個(gè)數(shù),還是將C劃分為4個(gè)全等的等腰直角三角形來(lái)求等等,各種方法都予于肯定,并鼓勵(lì)學(xué)生用語(yǔ)言進(jìn)行表達(dá),引導(dǎo)學(xué)生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關(guān)系,從而學(xué)生通過(guò)正方形面積之間的關(guān)系容易發(fā)現(xiàn)對(duì)于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。
2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,同樣讓學(xué)生計(jì)算正方形的面積,但正方形C的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫(huà)出圖形,再剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計(jì)不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會(huì)到觀察、猜想、歸納的思想,也讓學(xué)生的分析問(wèn)題和解決問(wèn)題的能力在無(wú)形中得到了提高,這對(duì)后面的學(xué)習(xí)極有幫助。
3、給出一個(gè)兩直角邊長(zhǎng)分別為1.6,2.4這種含小數(shù)的直角三角形,對(duì)學(xué)生有一定的挑戰(zhàn)性。讓學(xué)生驗(yàn)證是否也滿足這個(gè)結(jié)論,設(shè)計(jì)的目的是讓學(xué)生體會(huì)到結(jié)論更具有一般性。
(四)歸納總結(jié):
1、歸納
通過(guò)對(duì)邊長(zhǎng)為整數(shù)的等腰直角三角形到一般直角三角形再到邊長(zhǎng)含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語(yǔ)言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對(duì)于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行抽象、概括的能力是有益的,同時(shí)發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個(gè)結(jié)論要好的多。
2、總結(jié)
勾股定理內(nèi)容得出后,引導(dǎo)學(xué)生用符號(hào)語(yǔ)言表示,因?yàn)閷⑽淖终Z(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對(duì)勾股定理的研究,對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育。
(五)問(wèn)題解決:
讓學(xué)生解決開(kāi)頭的實(shí)際問(wèn)題,前后呼應(yīng),學(xué)生從中能體會(huì)到成功的喜悅。完成課本“想一想”進(jìn)一步體會(huì)勾股定理在實(shí)際生活中的應(yīng)用,數(shù)學(xué)是與實(shí)際生活緊密相連的。
(六)課堂小結(jié):
主要通過(guò)學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進(jìn)行小結(jié),后由教師總結(jié)。
(七)布置作業(yè):
課本P7習(xí)題1.1-- 2,4一方面鞏固勾股定理,另一方面進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。另外,補(bǔ)充一道開(kāi)放題。
四、 設(shè)計(jì)說(shuō)明
1、本節(jié)課是公式課,根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的教學(xué)流程是:提出問(wèn)題—猜想結(jié)論—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問(wèn)題解決—課堂小結(jié)—布置作業(yè)七部分,這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。
2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般再到更一般的對(duì)直角三角形三邊關(guān)系的研究,得出結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好思維品質(zhì)的形成有重要作用,對(duì)學(xué)生的終身發(fā)展也有一定的作用。
3、關(guān)于練習(xí)的設(shè)計(jì),除實(shí)際問(wèn)題和課本習(xí)題以外,我準(zhǔn)備設(shè)計(jì)一道開(kāi)放題,大致思路是已知直角三角形的兩條邊,求出與這個(gè)三角形所有相關(guān)的結(jié)論。
4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識(shí)的途徑等幾個(gè)方面展開(kāi),既有知識(shí)的總結(jié),又有方法的提煉,這樣對(duì)于學(xué)生學(xué)知識(shí),用知識(shí)的意識(shí)是有很大的促進(jìn)的。
一、教材分析
教材所處的地位與作用
“探索勾股定理”是人教版八年級(jí)《數(shù)學(xué)》下冊(cè)內(nèi)容?!肮垂啥ɡ怼笔前才旁趯W(xué)生學(xué)習(xí)了三角形、全等三角形、等腰三角形等有關(guān)知識(shí)之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來(lái),在幾何學(xué)中占有非常重要的位置。同時(shí)勾股定理在生產(chǎn)、生活中也有很大的用途。
二、教學(xué)目標(biāo)
綜上分析及教學(xué)大綱要求,本課時(shí)教學(xué)目標(biāo)制定如下:
1、知識(shí)目標(biāo)
知道勾股定理的由來(lái),初步理解割補(bǔ)拼接的面積證法。
掌握勾股定理,通過(guò)動(dòng)手操作利用等積法理解勾股定理的證明過(guò)程。
2、能力目標(biāo)
在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察——合理猜想——?dú)w納——驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學(xué)生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學(xué)探究問(wèn)題的能力。
3、情感目標(biāo)
通過(guò)觀察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過(guò)程。
介紹“趙爽弦圖”,讓學(xué)生感受到中國(guó)古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數(shù)學(xué)激情及愛(ài)國(guó)情感。
三、教學(xué)重難點(diǎn)
本課重點(diǎn)是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級(jí)學(xué)生構(gòu)造能力較低以及對(duì)面積證法的不熟悉,因此本課的難點(diǎn)便是勾股定理的證明。
四、教學(xué)問(wèn)題診斷
本節(jié)主要攻克的問(wèn)題就是本節(jié)的難點(diǎn):勾股定理的證明。我打算采用面積法來(lái)講解,但這種借助于圖形的面積來(lái)探索、驗(yàn)證數(shù)學(xué)結(jié)論的數(shù)形結(jié)合思想,對(duì)于學(xué)生來(lái)說(shuō),有些陌生,難以理解,又加之?dāng)?shù)學(xué)課本身的課程特征,在講解時(shí),沒(méi)有文科那么深動(dòng)形象,所以針對(duì)這一現(xiàn)狀,我在教法和學(xué)法上都進(jìn)行了改進(jìn)。
五、教法與學(xué)法分析
[教學(xué)方法與手段]針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問(wèn)題,引導(dǎo)學(xué)生自主探索,合作交流,并利用多媒體進(jìn)行教學(xué)。
[學(xué)法分析]在教師組織引導(dǎo)下,采用自主探索、合作交流的方式,讓學(xué)生自己實(shí)驗(yàn),自己獲取知識(shí),并感悟?qū)W習(xí)方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦能力,使學(xué)生真正成為學(xué)習(xí)的主體。讓學(xué)生感受到自己是學(xué)習(xí)的主體,增強(qiáng)他們的主動(dòng)感和責(zé)任感,這樣對(duì)掌握新知會(huì)事半功倍。
六、教學(xué)流程設(shè)計(jì)
1、創(chuàng)設(shè)情境,引入新課
本節(jié)課開(kāi)始利用多媒體介紹了在北京召開(kāi)的20xx年國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),其圖案為“趙爽弦圖”,由此導(dǎo)入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)?!昂玫拈_(kāi)始是成功的一半”,在課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲。多媒體展示這一有意義的圖案,可有效開(kāi)啟學(xué)生思維的閘門(mén),激勵(lì)探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動(dòng)變?yōu)橹鲃?dòng),在輕松愉悅的氛圍中學(xué)到知識(shí)。
2、觀察發(fā)現(xiàn),類(lèi)比猜想
讓學(xué)生仔細(xì)觀察畢達(dá)哥拉斯朋友家的瓷磚(圖1),從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學(xué)生合理猜測(cè):是否任意直角三角形都符合這個(gè)“三邊關(guān)系”的結(jié)論?同學(xué)們很輕易的得到了結(jié)論。最后對(duì)此結(jié)論通過(guò)在網(wǎng)格中數(shù)格子進(jìn)行驗(yàn)證,讓學(xué)生經(jīng)歷了“觀察——合理猜測(cè)——?dú)w納——驗(yàn)證”的這一數(shù)學(xué)思想。在數(shù)格子的驗(yàn)證過(guò)程中,發(fā)現(xiàn)任意直角三角形(圖2)斜邊上長(zhǎng)出的正方形中網(wǎng)格不規(guī)則,沒(méi)法數(shù)出。通過(guò)同學(xué)們的討論,發(fā)現(xiàn)數(shù)不出來(lái)的原因是格子不規(guī)則,從而想到了用補(bǔ)或割的方法進(jìn)行計(jì)算,其原則就是由不規(guī)則經(jīng)過(guò)割補(bǔ)變?yōu)橐?guī)則。
3、實(shí)驗(yàn)探究,證明結(jié)論
因?yàn)楣垂啥ɡ淼某霈F(xiàn),使數(shù)學(xué)從單一的純計(jì)算進(jìn)入了幾何圖形的證明,所以為了讓學(xué)生感受數(shù)形結(jié)合這一數(shù)學(xué)思想,讓學(xué)生親自動(dòng)手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補(bǔ),變?yōu)橐?guī)則的c2,又因兩塊割補(bǔ)前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。
4、練兵之際
這是“總統(tǒng)證法”,此時(shí)讓學(xué)生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數(shù)學(xué)的地位之高,第三在沒(méi)有講解的情況下,學(xué)生自己得出了“總統(tǒng)證法”,大大增強(qiáng)了學(xué)生的自信心和自豪感。
5、自己動(dòng)手,拼出弦圖
讓同學(xué)們拿出了提前準(zhǔn)備好的四個(gè)全等的邊長(zhǎng)為a、b、c的直角三角形進(jìn)行拼圖,小組活動(dòng),拼出自己喜愛(ài)的圖形,但有一個(gè)前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時(shí)已經(jīng)是把課堂全部還給了學(xué)生,讓他們?cè)跀?shù)學(xué)的海洋中馳騁,提供這種學(xué)習(xí)方式就是為了讓孩子們更加開(kāi)闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的證明,在黑板上盡情地展示了一番。
6、總結(jié)反思
通過(guò)這一堂課,我認(rèn)為數(shù)學(xué)教學(xué)的核心不是知識(shí)本身,而是數(shù)學(xué)的思維方式,而培養(yǎng)這種數(shù)學(xué)思維方式需要豐富的數(shù)學(xué)活動(dòng)。在活動(dòng)中學(xué)生可以用自己創(chuàng)造與體驗(yàn)的方法來(lái)學(xué)習(xí)數(shù)學(xué),這樣才能真正的掌握數(shù)學(xué),真正擁有數(shù)學(xué)的思維方式,這一課的學(xué)習(xí)就是通過(guò)讓學(xué)生自主探索知識(shí),從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí),教學(xué)模式也從教師講授為主轉(zhuǎn)為了學(xué)生動(dòng)腦、動(dòng)手、自主研究,小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)化為“數(shù)學(xué)實(shí)驗(yàn)室”,學(xué)生通過(guò)自己活動(dòng)得出結(jié)論,使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。
七、設(shè)計(jì)說(shuō)明
1、根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的數(shù)學(xué)流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類(lèi)比猜想——實(shí)驗(yàn)探究證明結(jié)論——自己動(dòng)手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識(shí)的發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生經(jīng)歷了觀察——猜想——?dú)w納——驗(yàn)證的思想和數(shù)形結(jié)合的思想。
2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般的數(shù)學(xué)思想對(duì)直角三角形三邊關(guān)系進(jìn)行了研究,并得出了結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好的思維品質(zhì)的形成有重要作用,對(duì)學(xué)生終身發(fā)展也有很大作用。
我按照“理解—掌握—運(yùn)用”的梯度設(shè)計(jì)了如下三組習(xí)題。
(1)對(duì)應(yīng)難點(diǎn),鞏固所學(xué);(2)考查重點(diǎn),深化新知;(3)解決問(wèn)題,感受應(yīng)用
第五步 溫故反思 任務(wù)后延
在課堂接近尾聲時(shí),我鼓勵(lì)學(xué)生從“四基”的要求對(duì)本節(jié)課進(jìn)行小結(jié)。進(jìn)而總結(jié)出一個(gè)定理、二個(gè)方案、三種思想、四種經(jīng)驗(yàn)。
然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學(xué)生的理念。
四、教學(xué)評(píng)價(jià)
在探究活動(dòng)中,教師評(píng)價(jià)、學(xué)生自評(píng)與互評(píng)相結(jié)合,從而體現(xiàn)評(píng)價(jià)主體多元化和評(píng)價(jià)方式的多樣化。
五、設(shè)計(jì)說(shuō)明
本節(jié)課探究體驗(yàn)貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
采用 “七巧板”代替教材中“畢達(dá)哥拉斯地板磚”利用我國(guó)傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國(guó)數(shù)學(xué)文化為主線這一設(shè)計(jì)理念,展現(xiàn)了我國(guó)古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。
以上就是我對(duì)《勾股定理》這一課的設(shè)計(jì)說(shuō)明,有不足之處請(qǐng)?jiān)u委老師們指正,謝謝大家。
學(xué)習(xí)目標(biāo)
1、通過(guò)拼圖,用面積的方法說(shuō)明勾股定理的正確性.
2.探索勾股定理的過(guò)程,發(fā)展合情推理的能力,體會(huì)數(shù)型結(jié)合的思想。
重點(diǎn)難點(diǎn)
或?qū)W習(xí)建議學(xué)習(xí)重點(diǎn):用面積的方法說(shuō)明勾股定理的正確.
學(xué)習(xí)難點(diǎn):勾股定理的'應(yīng)用.
學(xué)習(xí)過(guò)程教師
二次備課欄
自學(xué)準(zhǔn)備與知識(shí)導(dǎo)學(xué):
這是1955年希臘為紀(jì)念一位數(shù)學(xué)家曾經(jīng)發(fā)行的郵票。
郵票上的圖案是根據(jù)一個(gè)著名的數(shù)學(xué)定理設(shè)計(jì)的。
學(xué)習(xí)交流與問(wèn)題研討:
1、探索
問(wèn)題:分別以圖中的直角三角形三邊為邊向三角形外
作正方形,小方格的面積看做1,求這三個(gè)正方形的面積?
S正方形BCED=S正方形ACFG=S正方形ABHI=
發(fā)現(xiàn):
2、實(shí)驗(yàn)
在下面的方格紙上,任意畫(huà)幾個(gè)頂點(diǎn)都在格點(diǎn)上的三角形;并分別以這個(gè)三角形的各邊為一邊向三角形外做正方形并計(jì)算出正方形的面積。
請(qǐng)完成下表:
S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的關(guān)系
112
145
41620
91625
發(fā)現(xiàn):
如何用直角三角形的三邊長(zhǎng)來(lái)表示這個(gè)結(jié)論?
這個(gè)結(jié)論就是我們今天要學(xué)習(xí)的勾股定理:
如圖:我國(guó)古代把直角三角形中,較短的直角邊叫做“勾”,較長(zhǎng)的直角邊叫做“股”,斜邊叫做“弦”,所以勾股定理可表示為:弦股還可以表示為:或勾
練習(xí)檢測(cè)與拓展延伸:
練習(xí)1、求下列直角三角形中未知邊的長(zhǎng)
練習(xí)2、下列各圖中所示的線段的長(zhǎng)度或正方形的面積為多少。
(注:下列各圖中的三角形均為直角三角形)
例1、如圖,在四邊形中,∠,∠,,求.
檢測(cè):
1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,則c=________;
(2)b=8,c=17,則S△ABC=________。
2、在Rt△ABC中,∠C=90,周長(zhǎng)為60,斜邊與一條直角邊之比為13∶5,則這個(gè)三角形三邊長(zhǎng)分別是()
A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10
3、若等腰三角形中相等的兩邊長(zhǎng)為10cm,第三邊長(zhǎng)為16cm,那么第三邊上的高為()
A.12cmB.10cmC.8cmD.6cm
4、要登上8m高的建筑物,為了安全需要,需使梯子底端離建筑物6m,至少需要多長(zhǎng)的梯子?(畫(huà)出示意圖)
5、飛機(jī)在空中水平飛行,某一時(shí)刻剛好飛到一個(gè)男孩頭頂正上方4千米處,過(guò)了20秒,飛機(jī)距離這個(gè)男孩5千米,飛機(jī)每小時(shí)飛行多少千米?
課后反思或經(jīng)驗(yàn)總結(jié):
1、什么叫勾股定理;
2、什么樣的三角形的三邊滿足勾股定理;
3、用勾股定理解決一些實(shí)際問(wèn)題。
一、勾股定理是我國(guó)古數(shù)學(xué)的一項(xiàng)偉大成就.勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個(gè)重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實(shí)際生活的各個(gè)方面.教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析,使學(xué)生獲得較為直觀的印象,通過(guò)聯(lián)系和比較,了解勾股定理在實(shí)際生活中的廣泛應(yīng)用. 據(jù)此,制定教學(xué)目標(biāo)如下:
1.知識(shí)和方法目標(biāo):通過(guò)對(duì)一些典型題目的思考,練習(xí),能正確熟練地進(jìn)行勾股定理有關(guān)計(jì)算,深入對(duì)勾股定理的理解. 2.過(guò)程與方法目標(biāo):通過(guò)對(duì)一些題目的探討,以達(dá)到掌握知識(shí)的目的.
3.情感與態(tài)度目標(biāo):感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美.
教學(xué)重點(diǎn):勾股定理的應(yīng)用. 教學(xué)難點(diǎn):勾股定理的正確使用.
教學(xué)關(guān)鍵:在現(xiàn)實(shí)情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理.
二.說(shuō)教法和學(xué)法
1.以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過(guò)程.
2.切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過(guò)觀察,分析,討論,操作,歸納理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力.
3.通過(guò)演示實(shí)物,引導(dǎo)學(xué)生觀察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望.
三、教學(xué)程序本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動(dòng)手,動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下: 回顧問(wèn):勾股定理的內(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來(lái)學(xué)習(xí)這個(gè)定理在實(shí)際生活中的應(yīng)用.
尊敬的各位評(píng)委、老師,您們好,我是臨沂市蒼山縣實(shí)驗(yàn)中學(xué)的宋寧。今天我說(shuō)課的內(nèi)容是人教版《數(shù)學(xué)》八年級(jí)下冊(cè)第十八章第一節(jié)《勾股定理》第一課時(shí),我將從教材、教法與學(xué)法、教學(xué)過(guò)程、教學(xué)評(píng)價(jià)以及設(shè)計(jì)說(shuō)明五個(gè)方面來(lái)闡述對(duì)本節(jié)課的理解與設(shè)計(jì)。
一、教材分析:
(一) 教材的地位與作用
從知識(shí)結(jié)構(gòu)上看百度一下,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。
從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;
勾股定理又是對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育的良好素材,因此具備相當(dāng)重要的地位和作用。
根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級(jí)學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識(shí)技能、數(shù)學(xué)思考、問(wèn)題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國(guó)數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛(ài)祖國(guó)悠久文化的情感。
(二)重點(diǎn)與難點(diǎn)
為變被動(dòng)接受為主動(dòng)探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過(guò)程。限于八年級(jí)學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引領(lǐng)學(xué)生動(dòng)手實(shí)驗(yàn)突出重點(diǎn),合作交流突破難點(diǎn)。
二、教學(xué)與學(xué)法分析
教學(xué)方法 葉圣陶說(shuō)過(guò)“教師之為教,不在全盤(pán)授予,而在相機(jī)誘導(dǎo)。”因此教師利用幾何直觀提出問(wèn)題,引領(lǐng)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。
學(xué)法指導(dǎo) 為把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,教師鼓勵(lì)學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識(shí)的形成過(guò)程。
三、教學(xué)過(guò)程
我國(guó)數(shù)學(xué)文化源遠(yuǎn)流長(zhǎng)、博大精深,為了使學(xué)生感受其傳承的魅力,我將本節(jié)課設(shè)計(jì)為以下五個(gè)環(huán)節(jié)。
首先,情境導(dǎo)入 古韻今風(fēng)
給出《七巧八分圖》中的一組圖片,讓學(xué)生利用兩組七巧板進(jìn)行合作拼圖。(請(qǐng)看視頻)讓學(xué)生觀察并思考三個(gè)正方形面積之間的關(guān)系?它們圍成了什么三角形?反映在三邊上,又蘊(yùn)含著什么數(shù)學(xué)奧秘呢?寓教于樂(lè),激發(fā)學(xué)生好奇、探究的欲望。
(一)創(chuàng)設(shè)問(wèn)題情境,引入新課:
在這一環(huán)節(jié)中,我設(shè)計(jì)了這樣一個(gè)情境,多媒體動(dòng)畫(huà)展示,米老鼠來(lái)到了數(shù)學(xué)王國(guó)里的三角形城堡,要求只利用一根繩子,構(gòu)造一個(gè)直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預(yù)測(cè)大多數(shù)同學(xué)會(huì)無(wú)從下手,這樣引出課題。只有學(xué)習(xí)了勾股定理的逆定理后,大家都能幫助米老鼠進(jìn)入城堡,我認(rèn)為:“大疑而大進(jìn)”這樣做,充分調(diào)動(dòng)學(xué)習(xí)內(nèi)容,激發(fā)求知欲望,動(dòng)漫演示,又有了很強(qiáng)的趣味性,做到課之初,趣已生,疑已質(zhì)。
(二)實(shí)踐猜想
本環(huán)節(jié)要圍繞以下幾個(gè)活動(dòng)展開(kāi):
1、算一算:求以線段a,b為直角邊的直角三角形的斜邊c長(zhǎng)。
1a=3b=42a=5b=123a=2.5b=64a=6b=8
2、猜一猜,以下列線段長(zhǎng)為三邊的三角形形狀
13cm4cm5cm25cm12cm13cm
32.5cm6cm6.5cm46cm8cm10cm
3、擺一擺利用方便筷來(lái)操作問(wèn)題2,利用量角器來(lái)度量,驗(yàn)證問(wèn)題2的發(fā)現(xiàn)。
4、用恰當(dāng)?shù)恼Z(yǔ)言敘述你的結(jié)論
在算一算中學(xué)生復(fù)習(xí)了勾股定理,猜一猜和擺一擺中學(xué)生小組合作動(dòng)手實(shí)踐,在問(wèn)題1的基礎(chǔ)上做出合理的推測(cè)和猜想,這樣分層遞進(jìn)找到了學(xué)生思維的最近發(fā)展區(qū),面向不同層次的每一名學(xué)生,每一名學(xué)生都有參與數(shù)學(xué)活動(dòng)的機(jī)會(huì),最后運(yùn)用恰當(dāng)?shù)恼Z(yǔ)言表述,得到了勾股定理的逆定理。在整個(gè)過(guò)程的活動(dòng)中,教師給學(xué)生充分的時(shí)間和空間,教師以平等的身份參與小組活動(dòng)中,傾聽(tīng)意見(jiàn),幫助指導(dǎo)學(xué)生的實(shí)踐活動(dòng)。學(xué)生的擺一擺的過(guò)程利用實(shí)物投影儀展示,在活動(dòng)中教師關(guān)注;
1)學(xué)生的參與意識(shí)與動(dòng)手能力。
2)是否清楚三角形三邊長(zhǎng)度的平方關(guān)系是因,直角三角形是果。既先有數(shù),后有形。
3)數(shù)形結(jié)合的思想方法及歸納能力。
(三)推理證明
八年級(jí)正是學(xué)生由實(shí)驗(yàn)幾何向推理幾何過(guò)渡的重要時(shí)期,多數(shù)學(xué)生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,而構(gòu)造直角三角形就成為解決問(wèn)題的關(guān)鍵,直接拋給學(xué)生證明,無(wú)疑會(huì)石沉大海,所以,我采用分層導(dǎo)進(jìn)的方法,以求一石激起千層浪。
1.三邊長(zhǎng)度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關(guān)系?你是怎樣得到的?請(qǐng)簡(jiǎn)要說(shuō)明理由?
2.△ABC三邊長(zhǎng)a,b,c滿足a2+b2=c2與a,b為直角三角形之間有何關(guān)系?試說(shuō)明理由?
為了較好完成教師的誘導(dǎo),教師要給學(xué)生獨(dú)立思考的時(shí)間,要給學(xué)生在組內(nèi)交流個(gè)別意見(jiàn)的時(shí)間,教師要深入小組指導(dǎo)與幫助,并利用實(shí)物投影儀展示小組成果,取得階段性成果再探究問(wèn)題2.這樣由特殊到一般,凸顯了構(gòu)造直角三角形這一解決問(wèn)題的關(guān)鍵,讓他們?cè)诓粩嗟奶骄窟^(guò)程中,親自體驗(yàn)參與發(fā)現(xiàn)創(chuàng)造的愉悅,有效的突破了難點(diǎn)。
感謝您閱讀“幼兒教師教育網(wǎng)”的《勾股定理課件教案12篇》一文,希望能解決您找不到幼兒園教案時(shí)遇到的問(wèn)題和疑惑,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了勾股定理課件教案專(zhuān)題,希望您能喜歡!
相關(guān)推薦
身為的一名優(yōu)秀的幼兒園老師,寫(xiě)好說(shuō)課稿是我們必須要做的,為了讓學(xué)生在樂(lè)趣中學(xué)習(xí)成長(zhǎng),老師們?cè)谏险n前會(huì)準(zhǔn)備好說(shuō)課稿,有了說(shuō)課稿才能有計(jì)劃、有步驟、有質(zhì)量的完成教學(xué)任務(wù)。作為新手老師,我們?cè)撛趺磳?xiě)幼兒園說(shuō)課稿嗎?小編花時(shí)間專(zhuān)門(mén)編輯了勾股定理逆定理說(shuō)課稿集錦10篇,但愿對(duì)你的學(xué)習(xí)工作帶來(lái)幫助。尊敬的各位評(píng)...
老師是人類(lèi)社會(huì)不可缺少的一個(gè)重要崗位,由于教師本人的知識(shí)水平,經(jīng)驗(yàn)特長(zhǎng)的差別,所以在教案上會(huì)存在著一定的差異性,怎樣才能更好發(fā)揮的指導(dǎo)作用呢?下面是由幼兒教師教育網(wǎng)為大家?guī)?lái)的勾股定理的逆定理說(shuō)課稿,僅供你在工作和學(xué)習(xí)中參考!...
現(xiàn)在向您介紹幼兒園教案《八年級(jí)數(shù)學(xué)上冊(cè)《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)教案反思》《八年級(jí)數(shù)學(xué)上冊(cè)《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)教案反思》這是一篇八年級(jí)上冊(cè)數(shù)學(xué)教案,使用多媒體進(jìn)行教學(xué),使知識(shí)顯得形象直觀,充分發(fā)...
現(xiàn)在向您介紹幼兒園教案《八年級(jí)數(shù)學(xué)上冊(cè)《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)反思》《八年級(jí)數(shù)學(xué)上冊(cè)《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)反思》這是一篇八年級(jí)上冊(cè)數(shù)學(xué)教案,本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)...
幼兒教師教育網(wǎng)編輯為大家準(zhǔn)備了“初中物理課件教案”的內(nèi)容,希望以下網(wǎng)頁(yè)資料可以為你提供幫助。為了每節(jié)課做好準(zhǔn)備,老師們都需要為課程準(zhǔn)備教案和課件,現(xiàn)在你可以開(kāi)始編寫(xiě)你自己的課堂教案和課件了。課堂教案和課件的優(yōu)化是提高教學(xué)質(zhì)量的重要方法之一。...
最新更新