如果您想讀一篇好文章幼兒教師教育網(wǎng)編輯建議您看看“高一數(shù)學(xué)函數(shù)教案”,我們非常感謝您的關(guān)注希望您能收藏我們的網(wǎng)站。老師都需要為每堂課準(zhǔn)備教案課件,每位老師都需要認(rèn)真準(zhǔn)備自己的教案課件。教案是教師在教學(xué)過(guò)程中具體操作的依據(jù)。
初中數(shù)學(xué)知識(shí)少、淺、難度容易、知識(shí)面笮。高中數(shù)學(xué)知識(shí)廣泛,將對(duì)初中的數(shù)學(xué)知識(shí)推廣和引伸,也是對(duì)初中數(shù)學(xué)知識(shí)的完善。如:初中學(xué)習(xí)的角的概念只是“0—1800”范圍內(nèi)的,但實(shí)際當(dāng)中也有7200和“—300”等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負(fù)在內(nèi)的所有大小角。又如:高中要學(xué)習(xí)《立體幾何》,將在三維空間中求一些幾何實(shí)體的體積和表面積;還將學(xué)習(xí)“排列組合”知識(shí),以便解決排隊(duì)方法種數(shù)等問(wèn)題。如:①三個(gè)人排成一行,有幾種排隊(duì)方法,( =6種);②四人進(jìn)行乒乓球雙打比賽,有幾種比賽場(chǎng)次?(答: =3種)高中將學(xué)習(xí)統(tǒng)計(jì)這些排列的數(shù)學(xué)方法。初中中對(duì)一個(gè)負(fù)數(shù)開(kāi)平方無(wú)意義,但在高中規(guī)定了i2=-1,就使-1的平方根為±i.即可把數(shù)的概念進(jìn)行推廣,使數(shù)的概念擴(kuò)大到復(fù)數(shù)范圍等。這些知識(shí)同學(xué)們?cè)谝院蟮膶W(xué)習(xí)中將逐漸學(xué)習(xí)到。
(1)初中課堂教學(xué)量小、知識(shí)簡(jiǎn)單,通過(guò)教師課堂教慢的速度,爭(zhēng)取讓全面同學(xué)理解知識(shí)點(diǎn)和解題方法,課后老師布置作業(yè),然后通過(guò)大量的課堂內(nèi)、外練習(xí)、課外指導(dǎo)達(dá)到對(duì)知識(shí)的反反復(fù)復(fù)理解,直到學(xué)生掌握。而高中數(shù)學(xué)的學(xué)習(xí)隨著課程開(kāi)設(shè)多(有九們課學(xué)生同時(shí)學(xué)習(xí)),每天至少上六節(jié)課,自習(xí)時(shí)間三節(jié)課,這樣各科學(xué)習(xí)時(shí)間將大大減少,而教師布置課外題量相對(duì)初中減少,這樣集中數(shù)學(xué)學(xué)習(xí)的時(shí)間相對(duì)比初中少,數(shù)學(xué)教師將相初中那樣監(jiān)督每個(gè)學(xué)生的作業(yè)和課外練習(xí),就能達(dá)到相初中那樣把知識(shí)讓每個(gè)學(xué)生掌握后再進(jìn)行新課。
初中學(xué)生自學(xué)那能力低,大凡考試中所用的解題方法和數(shù)學(xué)思想,在初中教師基本上已反復(fù)訓(xùn)練,老師把學(xué)生要學(xué)生自己高度深刻理解的問(wèn)題,都集中表現(xiàn)在他的耐心的講解和大量的訓(xùn)練中,而且學(xué)生的聽(tīng)課只需要熟記結(jié)論就可以做題(不全是),學(xué)生不需自學(xué)。但高中的知識(shí)面廣,知識(shí)要全部要教師訓(xùn)練完高考中的習(xí)題類型是不可能的,只有通過(guò)較少的、較典型的一兩道例題講解去融會(huì)貫通這一類型習(xí)題,如果不自學(xué)、不靠大量的閱讀理解,將會(huì)使學(xué)生失去一類型習(xí)題的解法。另外,科學(xué)在不斷的發(fā)展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數(shù)學(xué)題型的開(kāi)發(fā)在不斷的多樣化,近年來(lái)提出了應(yīng)用型題、探索型題和開(kāi)放型題,只有靠學(xué)生的自學(xué)去深刻理解和創(chuàng)新才能適應(yīng)現(xiàn)代科學(xué)的發(fā)展。
其實(shí),自學(xué)能力的提高也是一個(gè)人生活的需要,他從一個(gè)方面也代表了一個(gè)人的素養(yǎng),人的一生只有18---24年時(shí)間是有導(dǎo)師的學(xué)習(xí),其后半生,最精彩的人生是人在一生學(xué)習(xí),靠的自學(xué)最終達(dá)到了自強(qiáng)。
初中學(xué)生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學(xué)生有,但隨著知識(shí)的難度大和知識(shí)面廣泛,學(xué)生不能全部模仿,即就是學(xué)生全部模仿訓(xùn)練做題,也不能開(kāi)拓學(xué)生自我思維能力,學(xué)生的數(shù)學(xué)成績(jī)也只能是一般程度?,F(xiàn)在高考數(shù)學(xué)考察,旨在考察學(xué)生能力,避免學(xué)生高分低能,避免定勢(shì)思維,提倡創(chuàng)新思維和培養(yǎng)學(xué)生的創(chuàng)造能力培養(yǎng)。初中學(xué)生大量地模仿使學(xué)生帶來(lái)了不利的思維定勢(shì),對(duì)高中學(xué)生帶來(lái)了保守的、僵化的思想,封閉了學(xué)生的豐富反對(duì)創(chuàng)造精神。如學(xué)生在解決:比較a與2a的大小時(shí)要不就錯(cuò)、要不就答不全面。大多數(shù)學(xué)生不會(huì)分類討論。
初中數(shù)學(xué)中,題目、已知和結(jié)論用常數(shù)給出的較多,一般地,答案是常數(shù)和定量。學(xué)生在分析問(wèn)題時(shí),大多是按定量來(lái)分析問(wèn)題,這樣的思維和問(wèn)題的解決過(guò)程,只能片面地、局限地解決問(wèn)題,在高中數(shù)學(xué)學(xué)習(xí)中我們將會(huì)大量地、廣泛地應(yīng)用代數(shù)的可變性去探索問(wèn)題的普遍性和特殊性。如:求解一元二次方程時(shí)我們采用對(duì)方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時(shí)的所有根的情形,使學(xué)生很快的掌握了對(duì)所有一元二次方程的解法。另外,在高中學(xué)習(xí)中我們還會(huì)通過(guò)對(duì)變量的分析,探索出分析、解決問(wèn)題的思路和解題所用的數(shù)學(xué)思想。
初中學(xué)生由于學(xué)習(xí)數(shù)學(xué)知識(shí)的范圍小,知識(shí)層次低,知識(shí)面笮,對(duì)實(shí)際問(wèn)題的思維受到了局限,就幾何來(lái)說(shuō),我們都接觸的是現(xiàn)實(shí)生活中三維空間,但初中只學(xué)了平面幾何,那么就不能對(duì)三維空間進(jìn)行嚴(yán)格的邏輯思維和判斷。代數(shù)中數(shù)的范圍只限定在實(shí)數(shù)中思維,就不能深刻的解決方程根的類型等。高中數(shù)學(xué)知識(shí)的多元化和廣泛性,將會(huì)使學(xué)生全面、細(xì)致、深刻、嚴(yán)密的分析和解決問(wèn)題。也將培養(yǎng)學(xué)生高素質(zhì)思維。提高學(xué)生的思維遞進(jìn)性。
教學(xué)目標(biāo):
進(jìn)一步理解指數(shù)函數(shù)及其性質(zhì),能運(yùn)用指數(shù)函數(shù)模型,解決實(shí)際問(wèn)題。
教學(xué)重點(diǎn):
用指數(shù)函數(shù)模型解決實(shí)際問(wèn)題。
教學(xué)難點(diǎn):
指數(shù)函數(shù)模型的建構(gòu)。
教學(xué)過(guò)程:
一、情境創(chuàng)設(shè)
1.某工廠今年的年產(chǎn)值為a萬(wàn)元,為了增加產(chǎn)值,今年增加了新產(chǎn)品的研發(fā),預(yù)計(jì)從明年起,年產(chǎn)值每年遞增15%,則明年的產(chǎn)值為萬(wàn)元,后年的產(chǎn)值為萬(wàn)元.若設(shè)x年后實(shí)現(xiàn)產(chǎn)值翻兩番,則得方程。
二、數(shù)學(xué)建構(gòu)
指數(shù)函數(shù)是常見(jiàn)的數(shù)學(xué)模型,也是重要的數(shù)學(xué)模型,常見(jiàn)于工農(nóng)業(yè)生產(chǎn),環(huán)境治理以及投資理財(cái)?shù)冗f增的常見(jiàn)模型為=(1+p%)x(p>0);遞減的常見(jiàn)模型則為=(1-p%)x(p>0)。
三、數(shù)學(xué)應(yīng)用
例1某種放射性物質(zhì)不斷變化為其他,每經(jīng)過(guò)一年,這種物質(zhì)剩留的質(zhì)量是原來(lái)的84%,寫出這種物質(zhì)的剩留量關(guān)于時(shí)間的函數(shù)關(guān)系式。
例2某醫(yī)藥研究所開(kāi)發(fā)一種新藥,據(jù)檢測(cè):如果成人按規(guī)定的劑量服用,服藥后每毫升血液中的含藥量為(微克),與服藥后的時(shí)間t(小時(shí))之間近似滿足如圖曲線,其中OA是線段,曲線ABC是函數(shù)=at的圖象。試根據(jù)圖象,求出函數(shù)=f(t)的解析式。
例3某位公民按定期三年,年利率為2.70%的方式把5000元存入銀行.問(wèn)三年后這位公民所得利息是多少元?
例4某種儲(chǔ)蓄按復(fù)利計(jì)算利息,若本金為a元,每期利率為r,設(shè)存期是x,本利和(本金加上利息)為元。
(1)寫出本利和隨存期x變化的函數(shù)關(guān)系式;
(2)如果存入本金1000元,每期利率為2.25%,試計(jì)算5期后的本利和。
(復(fù)利是把前一期的利息和本金加在一起作本金,再計(jì)算下一期利息的一種計(jì)算利息方法)
小結(jié):銀行存款往往采用單利計(jì)算方式,而分期付款、按揭則采用復(fù)利計(jì)算.這是因?yàn)樵诖婵钌希瑸榱藴p少儲(chǔ)戶的重復(fù)操作給銀行帶來(lái)的工作壓力,同時(shí)也是為了提高儲(chǔ)戶的長(zhǎng)期存款的積極性,往往定期現(xiàn)年的利息比再次存取定期一年的收益要高;而在分期付款的過(guò)程中,由于每次存入的現(xiàn)金存期不一樣,故需要采用復(fù)利計(jì)算方式.比如“本金為a元,每期還b元,每期利率為r”,第一期還款時(shí)本息和應(yīng)為a(1+p%),還款后余額為a(1+p%)-b,第二次還款時(shí)本息為(a(1+p%)-b)(1+p%),再還款后余額為(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次還款后余額為a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b.這就是復(fù)利計(jì)算方式。
例52000~2002年,我國(guó)國(guó)內(nèi)生產(chǎn)總值年平均增長(zhǎng)7.8%左右.按照這個(gè)增長(zhǎng)速度,畫(huà)出從2000年開(kāi)始我國(guó)年國(guó)內(nèi)生產(chǎn)總值隨時(shí)間變化的圖象,并通過(guò)圖象觀察到2010年我國(guó)年國(guó)內(nèi)生產(chǎn)總值約為2000年的多少倍(結(jié)果取整數(shù))。
高一數(shù)學(xué)函數(shù)課件
一、內(nèi)容和內(nèi)容解析
函數(shù)是數(shù)學(xué)中最重要的基本概念之一,它揭示了現(xiàn)實(shí)世界中數(shù)量關(guān)系之間相互依存和變化的實(shí)質(zhì),是刻畫(huà)和研究現(xiàn)實(shí)世界變化規(guī)律的重要模型。托馬斯稱:函數(shù)是現(xiàn)代數(shù)學(xué)思想之花。
《集合與函數(shù)概念》一章在高中數(shù)學(xué)中起著承上啟下的作用。本課學(xué)習(xí)的函數(shù)概念及其反映出來(lái)的數(shù)學(xué)思想方法已廣泛滲透到數(shù)學(xué)的各個(gè)領(lǐng)域,是進(jìn)一步學(xué)習(xí)數(shù)學(xué)的重要基礎(chǔ)。函數(shù)的思想方法貫穿了高中數(shù)學(xué)課程的始終。
本小節(jié)是繼學(xué)習(xí)集合語(yǔ)言之后,運(yùn)用集合與對(duì)應(yīng)語(yǔ)言,在初中學(xué)習(xí)的基礎(chǔ)上,進(jìn)一步刻畫(huà)函數(shù)概念,目的是讓學(xué)生認(rèn)識(shí)到它們優(yōu)越性,從根本上揭示函數(shù)的本質(zhì)。因此本課的教學(xué)重點(diǎn)是:學(xué)會(huì)用集合與對(duì)應(yīng)語(yǔ)言刻畫(huà)函數(shù)概念,進(jìn)一步認(rèn)識(shí)函數(shù)是描述客觀世界中變量間依賴關(guān)系的數(shù)學(xué)模型。
二、目標(biāo)和目標(biāo)解析
1.正確理解函數(shù)的概念,會(huì)用集合與對(duì)應(yīng)語(yǔ)言刻畫(huà)函數(shù)。通過(guò)實(shí)例分析,體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;強(qiáng)化數(shù)學(xué)的應(yīng)用與建模意識(shí);培養(yǎng)學(xué)生的學(xué)習(xí)興趣。
2.理解函數(shù)三要素,會(huì)求簡(jiǎn)單函數(shù)的定義域。通過(guò)例題教學(xué)與練習(xí),培養(yǎng)歸納概括能力。
3.理解符號(hào)y=f(x)的含義,明確f(x)與f(a)的區(qū)別與聯(lián)系。體會(huì)函數(shù)思想,代換思想,提高思維品質(zhì)。
三、教學(xué)問(wèn)題診斷分析
本堂課作為一堂公開(kāi)課,我曾在多個(gè)班級(jí)試教。主要問(wèn)題有:
首先,由三個(gè)實(shí)例歸納共性會(huì)遇到困難。原因是由具體實(shí)例到抽象的數(shù)學(xué)語(yǔ)言,要求學(xué)生具備較強(qiáng)的歸納概括能力;而對(duì)高一學(xué)生抽象思維能力相對(duì)較弱。
其次,學(xué)生不容易認(rèn)識(shí)到函數(shù)概念的整體性。原因是把函數(shù)單一地理解成函數(shù)中的對(duì)應(yīng)關(guān)系,甚至認(rèn)為函數(shù)就是函數(shù)值。
第三,函數(shù)符號(hào)y=f(x)比較抽象,學(xué)生難以理解。
因此本課的教學(xué)難點(diǎn)是:1、從主觀知識(shí)抽象成為客觀概念。2、函數(shù)符號(hào)y=f(x)的理解。
四、學(xué)習(xí)行為分析
在初中學(xué)生已學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,具體研究了幾類最簡(jiǎn)單的函數(shù),對(duì)函數(shù)并不陌生;學(xué)生已經(jīng)會(huì)把函數(shù)看成變量之間的依賴關(guān)系;同時(shí),雖然函數(shù)概念比較抽象,但函數(shù)現(xiàn)象大量存在于學(xué)生周圍,學(xué)生能列舉出函數(shù)的實(shí)例,已具備初步的數(shù)學(xué)建模能力。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?我們目前所教的學(xué)生經(jīng)歷了初中新課程改革,他們普遍思維活躍,表達(dá)能力強(qiáng),有較強(qiáng)的獨(dú)立解決問(wèn)題的能力。在平時(shí)的學(xué)習(xí)過(guò)程中,他們更喜歡教師創(chuàng)造疑問(wèn),然后自己想辦法解決問(wèn)題,通過(guò)教師的啟發(fā)點(diǎn)撥,學(xué)生以自己的努力找到解決問(wèn)題的方法。學(xué)生作為教學(xué)主體隨時(shí)對(duì)所學(xué)知識(shí)產(chǎn)生有意注意,努力思索解決疑問(wèn)的方式,使自己的能力通過(guò)教師的點(diǎn)撥得到發(fā)揮。
針對(duì)學(xué)生這一學(xué)習(xí)方式,我們?cè)诮虒W(xué)過(guò)程中從學(xué)生已有的知識(shí)經(jīng)驗(yàn)出發(fā),讓學(xué)生明白新問(wèn)題產(chǎn)生的背景,引導(dǎo)學(xué)生對(duì)三個(gè)實(shí)例進(jìn)行分析,然后歸納共性,抽象出用集合與對(duì)應(yīng)語(yǔ)言刻畫(huà)的函數(shù)概念。其間采用了多媒體動(dòng)畫(huà)演示、教師引導(dǎo)、學(xué)生探究、討論、交流一系列活動(dòng),讓學(xué)生感到“概念的.得出是水到渠成的,自然的而不是強(qiáng)加于人的”。
對(duì)函數(shù)概念的整體性的理解,通過(guò)設(shè)計(jì)“想一想”、“練一練”、“試一試”等問(wèn)題情景激發(fā)學(xué)生積極參與,在問(wèn)題解決的過(guò)程中鞏固函數(shù)概念。而對(duì)函數(shù)符號(hào)y=f(x),則讓學(xué)生分析實(shí)例和動(dòng)手操作,來(lái)認(rèn)識(shí)和理解符號(hào)的內(nèi)涵;并進(jìn)一步滲透函數(shù)思想、代換思想。如三個(gè)實(shí)例用統(tǒng)一的符號(hào)表示、例4中計(jì)算當(dāng)自變量是數(shù)字、字母不同情況時(shí)的函數(shù)值。讓學(xué)生在做數(shù)學(xué)中領(lǐng)會(huì)含義,學(xué)會(huì)解題方法,提高解決問(wèn)題的能力。
五、教學(xué)支持條件分析
《標(biāo)準(zhǔn)》提倡運(yùn)用信息技術(shù)呈現(xiàn)以往教學(xué)難以呈現(xiàn)的課程內(nèi)容,數(shù)學(xué)的理解需要直觀的觀察、視覺(jué)的感知,特別是幾何圖形的性質(zhì),復(fù)雜的計(jì)算過(guò)程,函數(shù)的動(dòng)態(tài)變化過(guò)程、幾何直觀背景等,若能利用信息技術(shù)來(lái)直觀呈現(xiàn)使其可視化將會(huì)有助于學(xué)生的理解。本節(jié)課將充分利用信息技術(shù)支持課堂教學(xué)。
1、? ?多媒體動(dòng)畫(huà)演示炮彈發(fā)射。在形象生動(dòng)的情景中感受高度h隨時(shí)間t的變化而變化的運(yùn)動(dòng)規(guī)律。
2、? ?用幾何畫(huà)板畫(huà)出h=130t-5t2的圖象。在圖象上任取一點(diǎn)P(t,h),然后拖動(dòng)點(diǎn)P的位置,觀察點(diǎn)P的橫坐標(biāo)t與縱坐標(biāo)h的變化規(guī)律。
3、? ?制作幻燈片展示問(wèn)題情景。
教學(xué)目標(biāo):
1.理解的概念,了解三要素.
2.通過(guò)對(duì)抽象符號(hào)的認(rèn)識(shí)與使用,使學(xué)生在符號(hào)表示方面的能力得以提高.
3.通過(guò)定義由變量觀點(diǎn)向映射觀點(diǎn)得過(guò)渡,使學(xué)生能從發(fā)展與聯(lián)系的角度看待數(shù)學(xué)學(xué)習(xí).
教學(xué)重點(diǎn)難點(diǎn):重點(diǎn)是在映射的基礎(chǔ)上理解的概念;
難點(diǎn)是對(duì)抽象符號(hào)的認(rèn)識(shí)與使用.
教學(xué)用具:投影儀
教學(xué)方法:自學(xué)研究與啟發(fā)討論式.
教學(xué)過(guò)程:
一、復(fù)習(xí)與引入
今天我們研究的內(nèi)容是的概念.并不象前面學(xué)習(xí)的集合,映射一樣我們一無(wú)所知,而是比較熟悉,所以我先找同學(xué)說(shuō)說(shuō)對(duì)的認(rèn)識(shí),如是什么?學(xué)過(guò)什么?
(要求學(xué)生盡量用自己的話描述初中的定義,并試舉出各類學(xué)過(guò)的例子)
學(xué)生舉出如 等,待學(xué)生說(shuō)完定義后教師打出投影片,給出定義之后教師也舉一個(gè)例子,問(wèn)學(xué)生.
提問(wèn)1. 是嗎?
(由學(xué)生討論,發(fā)表各自的意見(jiàn),有的認(rèn)為它不是,理由是沒(méi)有兩個(gè)變量,也有的認(rèn)為是,理由是可以可做 .)
教師由此指出我們爭(zhēng)論的焦點(diǎn),其實(shí)就是定義的不完善的地方,這也正是我們今天研究定義的必要性,新的定義將在與原定義不相違背的基礎(chǔ)上從更高的觀點(diǎn),將它完善與深化.
二、新課
現(xiàn)在請(qǐng)同學(xué)們打開(kāi)書(shū)翻到第50 頁(yè),從這開(kāi)始閱讀有關(guān)的內(nèi)容,再回答我的問(wèn)題.(約2-3分鐘或開(kāi)始提問(wèn))
提問(wèn)2.新的的定義是什么?能否用最簡(jiǎn)單的語(yǔ)言來(lái)概括一下.
學(xué)生的回答往往是把書(shū)上的定義念一遍,教師可以板書(shū)的形式寫出定義,但還要引導(dǎo)形式發(fā)現(xiàn)定義的本質(zhì).
(板書(shū))2.2
一、的概念
1.定義:如果A,B都是非空的數(shù)集,那么A到B的映射 就叫做A到B的,記作 .其中原象集合A稱為定義域,象集C 稱為值域.
問(wèn)題3:映射與有何關(guān)系?(一定是映射嗎?映射一定是嗎?)
引導(dǎo)學(xué)生發(fā)現(xiàn),是特殊的映射,特殊在集合A,B必是非空的數(shù)集.
2.本質(zhì):是非空數(shù)集到非空數(shù)集的映射.(板書(shū))
然后讓學(xué)生試回答剛才關(guān)于 是不是的問(wèn)題,要求從映射的角度解釋.
此時(shí)學(xué)生可以清楚的看到 滿足映射觀點(diǎn)下的定義,故是一個(gè),這樣解釋就很自然.
教師繼續(xù)把問(wèn)題引向深入,提出在映射的觀點(diǎn)下如何解釋 是個(gè)?
從映射角度看可以是 其中定義域是 ,值域是 .
從剛才的分析可以看出,映射觀點(diǎn)下的定義更具一般性,更能揭示的`本質(zhì).這也是我們后面要對(duì)進(jìn)行理論研究的一種需要.所以我們著重從映射角度再來(lái)認(rèn)識(shí).
3.的三要素及其作用(板書(shū))
是映射,自然是由三件事構(gòu)成的一個(gè)整體,分別稱為定義域.值域和對(duì)應(yīng)法則.當(dāng)我們認(rèn)識(shí)一個(gè)時(shí),應(yīng)從這三方面去了解認(rèn)識(shí)它.
例1 以下關(guān)系式表示嗎?為什么?
(1) ; (2) .
解:(1)由 有意義得 ,解得 .由于定義域是空集,故它不能表示.
(2) 由 有意義得 ,解得 .定義域?yàn)?,值域?yàn)?.
由以上兩題可以看出三要素的作用
(1)判斷一個(gè)關(guān)系是否存在.(板書(shū))
例2 下列各中,哪一個(gè)與 是同一個(gè).
(1) ; (2) (3) ; (4) .
解:先認(rèn)清 ,它是 (定義域)到 (值域)的映射,其中
.
再看(1)定義域?yàn)?且 ,是不同的; (2)定義域?yàn)?,是不同的;
(4) ,法則是不同的;
而(3)定義域是 ,值域是 ,法則是乘2減1,與 完全相同.
求解后要求學(xué)生明確判斷兩個(gè)是否相同應(yīng)看定義域和對(duì)應(yīng)法則完全一致,這時(shí)三要素的又一作用.
(2)判斷兩個(gè)是否相同.(板書(shū))
下面我們研究一下如何表示,以前我們學(xué)習(xí)時(shí)雖然會(huì)表示,但沒(méi)有相系統(tǒng)研究的表示法,其實(shí)表示法有很多,不過(guò)首先應(yīng)從記號(hào) 說(shuō)起.
4.對(duì)符號(hào) 的理解(板書(shū))
首先讓學(xué)生知道 與 的含義是一樣的,它們都表示 是 的,其中 是自變量, 是值,連接的紐帶是法則 ,所以這個(gè)符號(hào)本身也說(shuō)明是三要素構(gòu)成的整體.下面我們舉例說(shuō)明.
例3 已知 試求 (板書(shū))
分析:首先讓學(xué)生認(rèn)清 的含義,要求學(xué)生能從變量觀點(diǎn)和映射觀點(diǎn)解釋,再進(jìn)行計(jì)算.
含義1:當(dāng)自變量 取3時(shí),對(duì)應(yīng)的值即 ;
含義2:定義域中原象3的象 ,根據(jù)求象的方法知 .而 應(yīng)表示原象 的象,即 .
計(jì)算之后,要求學(xué)生了解 與 的區(qū)別, 是常量,而 是變量, 只是 中一個(gè)特殊值.
最后指出在剛才的題目中 是用一個(gè)具體的解析式表示的,而以后研究的 不一定能用一個(gè)解析式表示,此時(shí)我們需要用其他的方法表示,具體的方法下節(jié)課再進(jìn)一步研究.
三、小結(jié)
1. 的定義
2. 對(duì)三要素的認(rèn)識(shí)
3. 對(duì)符號(hào)的認(rèn)識(shí)
四、作業(yè):略
五、板書(shū)設(shè)計(jì)
2.2 例1. 例3.
一. 的概念
1. 定義
2. 本質(zhì) 例2. 小結(jié):
3. 三要素的認(rèn)識(shí)及作用
4. 對(duì)符號(hào)的理解
探究活動(dòng)
在數(shù)學(xué)及實(shí)際生活中有著廣泛的應(yīng)用,在我們身邊就存在著很多與有關(guān)的問(wèn)題如在我們身邊就有不少分段的實(shí)例,下面就是一個(gè)生活中的分段.
夏天,大家都喜歡吃西瓜,而西瓜的價(jià)格往往與西瓜的重量相關(guān).某人到一個(gè)水果店去買西瓜,價(jià)格表上寫的是:6斤以下,每斤0.4元.6斤以上9斤以下,每斤0.5元,9斤以上,每斤0.6元.此人挑了一個(gè)西瓜,稱重后店主說(shuō)5元1角,1角就不要了,給5元吧,可這位聰明的顧客馬上說(shuō),你不僅沒(méi)少要,反而多收了我錢,當(dāng)顧客講出理由,店主只好承認(rèn)了錯(cuò)誤,照實(shí)收了錢.
同學(xué)們,你知道顧客是怎樣店主坑人了呢?其實(shí)這樣的數(shù)學(xué)問(wèn)題在我們身邊有很多,只要你注意觀察,積累,并學(xué)以至用,就能成為一個(gè)聰明人,因?yàn)閿?shù)學(xué)可以使人聰明起來(lái).
答案:
若西瓜重9斤以下則最多應(yīng)付4.5元,若西瓜重9斤以上,則最少也要5.4元,不可能出現(xiàn)5.1元這樣的價(jià)錢,所以店主坑人了.
1、函數(shù):設(shè)A、B為非空集合,如果按照某個(gè)特定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù),寫作y=f(x),x∈A,其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域,與x相對(duì)應(yīng)的y的值叫做函數(shù)值,函數(shù)值的集合B={f(x)∣x∈A }叫做函數(shù)的值域。
2、函數(shù)定義域的解題思路:
⑴ 若x處于分母位置,則分母x不能為0。
⑵ 偶次方根的被開(kāi)方數(shù)不小于0。
⑶ 對(duì)數(shù)式的真數(shù)必須大于0。
⑷ 指數(shù)對(duì)數(shù)式的底,不得為1,且必須大于0。
⑸ 指數(shù)為0時(shí),底數(shù)不得為0。
⑹ 如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的,那么,它的定義域是各個(gè)部分都有意義的x值組成的集合。
⑺ 實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義。
⑴ 觀察法:適用于初等函數(shù)及一些簡(jiǎn)單的由初等函數(shù)通過(guò)四則運(yùn)算得到的函數(shù)。
⑵ 圖像法:適用于易于畫(huà)出函數(shù)圖像的函數(shù)已經(jīng)分段函數(shù)。
⑶ 配方法:主要用于二次函數(shù),配方成 y=(x-a)2+b 的形式。
⑷ 代換法:主要用于由已知值域的函數(shù)推測(cè)未知函數(shù)的值域。
⑴平移變換:在x軸上的變換在x上就行加減,在y軸上的變換在y上進(jìn)行加減。
6、映射:設(shè)A、B是兩個(gè)非空集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于A中的任意儀的元素x,在集合B中都有唯一的確定的y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A→B為從集合A到集合B的映射。
⑴ 集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的。
⑵ 集合A中的不同元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè)。
⑶ 不要求集合B中的每一個(gè)元素在集合A中都有原象。
⑴ 在定義域的不同部分上有不同的解析式表達(dá)式。
⑵ 各部分自變量和函數(shù)值的取值范圍不同。
⑶ 分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集。
8、復(fù)合函數(shù):如果(u∈M),u=g(x) (x∈A),則,y=f[g(x)]=F(x) (x∈A),稱為f、g的復(fù)合函數(shù)。
一、方程的根與函數(shù)的零點(diǎn)
1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù)y=f(x),使f(x)=0 的實(shí)數(shù)x叫做函數(shù)的零點(diǎn)。(實(shí)質(zhì)上是函數(shù)y=f(x)與x軸交點(diǎn)的橫坐標(biāo))
2、函數(shù)零點(diǎn)的意義:方程f(x)=0 有實(shí)數(shù)根函數(shù)y=f(x)的圖象與x軸有交點(diǎn)函數(shù)y=f(x)有零點(diǎn)
3、零點(diǎn)定理:函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的,并且有f(a)f(b)0,那么函數(shù)y=f(x)在區(qū)間(a,b)至少有一個(gè)零點(diǎn)c,使得f( c)=0,此時(shí)c也是方程 f(x)=0 的根。
4、函數(shù)零點(diǎn)的求法:求函數(shù)y=f(x)的零點(diǎn):
(1) (代數(shù)法)求方程f(x)=0 的實(shí)數(shù)根;
(2) (幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)y=f(x)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).
5、二次函數(shù)的零點(diǎn):二次函數(shù)f(x)=ax2+bx+c(a≠0).
1)△0,方程f(x)=0有兩不等實(shí)根,二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
2)△=0,方程f(x)=0有兩相等實(shí)根(二重根),二次函數(shù)的圖象與x軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).
3)△0,方程f(x)=0無(wú)實(shí)根,二次函數(shù)的圖象與x軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).
二、二分法
1、概念:對(duì)于在區(qū)間[a,b]上連續(xù)不斷且f(a)f(b)0的函數(shù)y=f(x),通過(guò)不斷地把函數(shù)f(x)的零點(diǎn)所在的'區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法。
2、用二分法求方程近似解的步驟:
⑴確定區(qū)間[a,b],驗(yàn)證f(a)f(b)0,給定精確度ε;
⑵求區(qū)間(a,b)的中點(diǎn)c;
⑶計(jì)算f(c),
①若f(c)=0,則c就是函數(shù)的零點(diǎn);
②若f(a)f(c)0,則令b=c(此時(shí)零點(diǎn)x0∈(a,c))
③若f(c)f(b)0,則令a=c(此時(shí)零點(diǎn)x0∈(c,b))
(4)判斷是否達(dá)到精確度ε:即若|a-b|ε,則得到零點(diǎn)近似值為a(或b);否則重復(fù)⑵~⑷
三、函數(shù)的應(yīng)用:
(1)評(píng)價(jià)模型: 給定模型利用學(xué)過(guò)的知識(shí)解模型驗(yàn)證是否符合實(shí)際情況。
(2)幾個(gè)增長(zhǎng)函數(shù)模型:一次函數(shù):y=ax+b(a0)
指數(shù)函數(shù):y=ax(a1) 指數(shù)型函數(shù): y=kax(k1)
冪函數(shù): y=xn( nN*) 對(duì)數(shù)函數(shù):y=logax(a1)
二次函數(shù):y=ax2+bx+c(a0)
增長(zhǎng)快慢:V(ax)V(xn)V(logax)
解不等式 (1) log2x x2 (2) log2x 2x
(3)分段函數(shù)的應(yīng)用:注意端點(diǎn)不能重復(fù)取,求函數(shù)值先判斷自變量所在的區(qū)間。
(4)二次函數(shù)模型: y=ax2+bx+c(a≠0) 先求函數(shù)的定義域,在求函數(shù)的對(duì)稱軸,看它在不在定義域內(nèi),在的話代進(jìn)求出最值,不在的話,將定義域內(nèi)離對(duì)稱軸最近的點(diǎn)代進(jìn)求最值。
(5)數(shù)學(xué)建模:
(一)通過(guò)具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗(yàn)數(shù)學(xué)概念的建立過(guò)程,培養(yǎng)其抽象概括能力.
(二)理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡(jiǎn)單函數(shù)的奇偶性.
(三)在經(jīng)歷概念形成的過(guò)程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗(yàn)數(shù)學(xué)既是抽象的又是具體的.
這節(jié)內(nèi)容學(xué)生在初中雖沒(méi)學(xué)過(guò),但已經(jīng)學(xué)習(xí)過(guò)具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax■,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,便于學(xué)生理解.在引入概念時(shí)始終結(jié)合具體函數(shù)的圖像,增強(qiáng)直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時(shí)為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對(duì)于概念可從代數(shù)特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點(diǎn)對(duì)稱的非空數(shù)集;對(duì)于有定義域奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念——非奇非偶函數(shù).關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想的效果.
1.觀察如下兩圖(圖略),思考并討論以下問(wèn)題:
(1)這兩個(gè)函數(shù)圖像有什么共同特征?
(2)相應(yīng)的兩個(gè)函數(shù)值對(duì)應(yīng)表是如何體現(xiàn)這些特征的?
可以看到兩個(gè)函數(shù)的圖像都關(guān)于y軸對(duì)稱.從函數(shù)值對(duì)應(yīng)表可以看到,當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的兩個(gè)函數(shù)值相同.
2.觀察函數(shù)f(x)=x和f(x)=的.圖像,并完成下面的兩個(gè)函數(shù)值對(duì)應(yīng)表,然后說(shuō)出這兩個(gè)函數(shù)有什么共同特征.
可以看到兩個(gè)函數(shù)的圖像都關(guān)于原點(diǎn)對(duì)稱.函數(shù)圖像的這個(gè)特征,反映在解析式上就是:當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的函數(shù)值f(x)也是一對(duì)相反數(shù),即對(duì)任一x∈R都有f(-x)=-f(x).此時(shí),稱函數(shù)y=f(x)為奇函數(shù).
由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義.
1.奇、偶函數(shù)的定義.
如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù).如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù).
2.提出問(wèn)題,組織學(xué)生討論.
(1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎?
(2)奇、偶函數(shù)的圖像有什么特征?
(3)奇、偶函數(shù)的定義域有什么特征?
[例題]
1.判斷下列函數(shù)的奇偶性.
注:①規(guī)范解題格式;②對(duì)于(5)要注意定義域x∈(-1,1].
2.已知:定義在R上的函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x(1+x),求f(x)的表達(dá)式.
解:(1)任取x0,∴f(-x)=-x(1-x),而f(x)是奇函數(shù),∴f(-x)=-f(x),∴f(x)=x(1-x).
(2)當(dāng)x=0時(shí),f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)內(nèi)是增函數(shù),還是減函數(shù),并證明你的結(jié)論.
解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對(duì)稱,猜想f(x)在(0,+∞)內(nèi)是增函數(shù),證明如下:
∴f(x)在(0,+∞)上是增函數(shù).
思考:奇函數(shù)或偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的兩個(gè)區(qū)間上的單調(diào)性有何關(guān)系?
[練習(xí)]
1.已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問(wèn)f(x)在[-b,-a]上的單調(diào)性如何.
4.設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
1.有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個(gè)?
2.設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:
(1)F(x)=f(x)·g(x)的奇偶性.
(2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù).
4.一個(gè)定義在R上的函數(shù),是否都可以表示為一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和的形式?
1.2解三角形應(yīng)用舉例第四課時(shí)
一、教學(xué)目標(biāo)
1、能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法進(jìn)一步解決有關(guān)三角形的問(wèn)題,掌握三角形的面積公式的簡(jiǎn)單推導(dǎo)和應(yīng)用
2、本節(jié)課補(bǔ)充了三角形新的面積公式,巧妙設(shè)疑,引導(dǎo)學(xué)生證明,同時(shí)總結(jié)出該公式的特點(diǎn),循序漸進(jìn)地具體運(yùn)用于相關(guān)的題型。另外本節(jié)課的證明題體現(xiàn)了前面所學(xué)知識(shí)的生動(dòng)運(yùn)用,教師要放手讓學(xué)生摸索,使學(xué)生在具體的論證中靈活把握正弦定理和余弦定理的特點(diǎn),能不拘一格,一題多解。只要學(xué)生自行掌握了兩定理的特點(diǎn),就能很快開(kāi)闊思維,有利地進(jìn)一步突破難點(diǎn)。
3、讓學(xué)生進(jìn)一步鞏固所學(xué)的知識(shí),加深對(duì)所學(xué)定理的理解,提高創(chuàng)新能力;進(jìn)一步培養(yǎng)學(xué)生研究和發(fā)現(xiàn)能力,讓學(xué)生在探究中體驗(yàn)愉悅的成功體驗(yàn)
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):推導(dǎo)三角形的面積公式并解決簡(jiǎn)單的相關(guān)題目
難點(diǎn):利用正弦定理、余弦定理來(lái)求證簡(jiǎn)單的證明題
三、教學(xué)過(guò)程
Ⅰ.課題導(dǎo)入
[創(chuàng)設(shè)情境]
師:以前我們就已經(jīng)接觸過(guò)了三角形的面積公式,今天我們來(lái)學(xué)習(xí)它的另一個(gè)表達(dá)公式。在
ABC中,邊BC、CA、AB上的高分別記為h、h、h,那么它們?nèi)绾斡靡阎吅徒潜硎荆?/p>
生:h=bsinC=csinBh=csinA=asinCh=asinB=bsinaA
師:根據(jù)以前學(xué)過(guò)的三角形面積公式S=ah,應(yīng)用以上求出的高的公式如h=bsinC代入,可以推導(dǎo)出下面的三角形面積公式,S=absinC,大家能推出其它的幾個(gè)公式嗎?
生:同理可得,S=bcsinA,S=acsinB
Ⅱ.講授新課
[范例講解]
例1、在ABC中,根據(jù)下列條件,求三角形的面積S(精確到0.1cm)
(1)已知a=14cm,c=24cm,B=150;
(2)已知B=60,C=45,b=4cm;
(3)已知三邊的長(zhǎng)分別為a=3cm,b=4cm,c=6cm
分析:這是一道在不同已知條件下求三角形的面積的問(wèn)題,與解三角形問(wèn)題有密切的關(guān)系,我們可以應(yīng)用解三角形面積的知識(shí),觀察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面積。
解:略
例2、如圖,在某市進(jìn)行城市環(huán)境建設(shè)中,要把一個(gè)三角形的區(qū)域改造成室內(nèi)公園,經(jīng)過(guò)測(cè)量得到這個(gè)三角形區(qū)域的三條邊長(zhǎng)分別為68m,88m,127m,這個(gè)區(qū)域的面積是多少?(精確到0.1cm)?
思考:你能把這一實(shí)際問(wèn)題化歸為一道數(shù)學(xué)題目嗎?
本題可轉(zhuǎn)化為已知三角形的三邊,求角的問(wèn)題,再利用三角形的面積公式求解。
解:設(shè)a=68m,b=88m,c=127m,根據(jù)余弦定理的推論,
cosB==≈0.7532
sinB=0.6578應(yīng)用S=acsinB
S≈681270.6578≈2840.38(m)
答:這個(gè)區(qū)域的面積是2840.38m。
變式練習(xí)1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面積S
提示:解有關(guān)已知兩邊和其中一邊對(duì)角的問(wèn)題,注重分情況討論解的個(gè)數(shù)。
答案:a=6,S=9;a=12,S=18
例3、在ABC中,求證:
(1)
(2)++=2(bccosA+cacosB+abcosC)
分析:這是一道關(guān)于三角形邊角關(guān)系恒等式的證明問(wèn)題,觀察式子左右兩邊的特點(diǎn),用正弦定理來(lái)證明
證明:(1)根據(jù)正弦定理,可設(shè)
===k顯然k0,所以
左邊===右邊
(2)根據(jù)余弦定理的推論,
右邊=2(bc+ca+ab)
=(b+c-a)+(c+a-b)+(a+b-c)=a+b+c=左邊
變式練習(xí)2:判斷滿足sinC=條件的三角形形狀
提示:利用正弦定理或余弦定理,“化邊為角”或“化角為邊”(解略)直角三角形
Ⅲ.課堂練習(xí)課本第18頁(yè)練習(xí)第1、2、3題
Ⅳ.課時(shí)小結(jié)
利用正弦定理或余弦定理將已知條件轉(zhuǎn)化為只含邊的式子或只含角的三角函數(shù)式,然后化簡(jiǎn)并考察邊或角的關(guān)系,從而確定三角形的形狀。特別是有些條件既可用正弦定理也可用余弦定理甚至可以兩者混用。
Ⅴ.課后作業(yè)
《習(xí)案》作業(yè)七
設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)應(yīng)定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)變量x1、x2,當(dāng)x1
ⅰ在給出區(qū)間內(nèi)任取x1、x2,則x1、x2∈D,且x1
ⅱ 做差值f(x1)-f(x2),并進(jìn)行變形和配方,變?yōu)橐子谂袛嗾?fù)的形式。
ⅲ判斷變形后的表達(dá)式f(x1)-f(x2)的符號(hào),指出單調(diào)性。
復(fù)合函數(shù)y=f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律為“同增異減”;多個(gè)函數(shù)的復(fù)合函數(shù),根據(jù)原則“減偶則增,減奇則減”。
函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成并集,如果函數(shù)在區(qū)間A和B上都遞增,則表示為f(x)的單調(diào)遞增區(qū)間為A和B,不能表示為A∪B。
對(duì)于函數(shù)f(x)定義域內(nèi)的任意一個(gè)x,都有f(x) =f(-x),則f(x)就為偶函數(shù);
對(duì)于函數(shù)f(x)定義域內(nèi)的任意一個(gè)x,都有f(x) =-f(x),則f(x)就為奇函數(shù)。
ⅰ無(wú)論函數(shù)是奇函數(shù)還是偶函數(shù),只要函數(shù)具有奇偶性,該函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱。
ⅱ奇函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱,偶函數(shù)的圖像關(guān)于y軸對(duì)稱。
ⅰ先確定函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不關(guān)于原點(diǎn)對(duì)稱,則為非奇非偶函數(shù)。
ⅱ確定f(x) 和f(-x)的關(guān)系:
若f(x) -f(-x)=0,或f(x) /f(-x)=1,則函數(shù)為偶函數(shù);
若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,則函數(shù)為奇函數(shù)。
⑴對(duì)于二次函數(shù),利用配方法,將函數(shù)化為y=(x-a)2+b的形式,得出函數(shù)的最大值或最小值。
⑵對(duì)于易于畫(huà)出函數(shù)圖像的函數(shù),畫(huà)出圖像,從圖像中觀察最值。
ⅰ判斷二次函數(shù)的頂點(diǎn)是否在所求區(qū)間內(nèi),若在區(qū)間內(nèi),則接ⅱ,若不在區(qū)間內(nèi),則接ⅲ。
ⅱ 若二次函數(shù)的頂點(diǎn)在所求區(qū)間內(nèi),則在二次函數(shù)y=ax2+bx+c中,a>0時(shí),頂點(diǎn)為最小值,a0時(shí)的最大值或a
若函數(shù)在[a,b]上遞增,則最小值為f(a),最大值為f(b);
若函數(shù)在[a,b]上遞減,則最小值為f(b),最大值為f(a)。
感謝您閱讀“幼兒教師教育網(wǎng)”的《高一數(shù)學(xué)函數(shù)教案9篇》一文,希望能解決您找不到幼兒園教案時(shí)遇到的問(wèn)題和疑惑,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了高一數(shù)學(xué)函數(shù)教案專題,希望您能喜歡!
相關(guān)推薦
老師在上課前需要有教案課件,只要課前把教案課件寫好就可以。制作好的教案是實(shí)現(xiàn)優(yōu)質(zhì)教學(xué)的有力保障。幼兒教師教育網(wǎng)編輯為你收集整理了“數(shù)學(xué)一次函數(shù)教案”,我們?cè)谶@里提供的指導(dǎo)意見(jiàn)僅供參考具體情況還需要您自己決定!...
這篇“高一函數(shù)課件”是幼兒教師教育網(wǎng)小編精心制作的,希望您能夠喜歡它,并從中獲得幫助。教案和課件是每位教師為上課準(zhǔn)備的必要材料,但它們并非隨隨便便就能寫好。只有寫好教案,才能打造出完整的課堂教學(xué)。...
每一位教師都需要撰寫教案和課件,以便上好課。然而,這并不是隨便寫寫就可以的。學(xué)生在課堂上的反應(yīng)各不相同,這可以幫助教師制定不同的教學(xué)策略。今天幼兒教師教育網(wǎng)為大家推薦一篇關(guān)于“高一函數(shù)課件”的精選文章。非常感謝您的閱讀,希望我們的網(wǎng)站能給您帶來(lái)愉悅并令您心生收藏!...
教案課件也是老師工作重要的一環(huán),因此最好認(rèn)真撰寫每個(gè)教案課件。制作教案是加強(qiáng)師德師風(fēng)建設(shè)的重要保證。如果您需要,編輯可以整理“指數(shù)函數(shù)教案”的相關(guān)資料供您參考,并請(qǐng)務(wù)必收藏!...
我們常說(shuō),機(jī)會(huì)是留給有準(zhǔn)備的人。在每學(xué)期開(kāi)學(xué)之前,幼兒園的老師們都要為自己之后的教學(xué)做準(zhǔn)備。為了加強(qiáng)學(xué)習(xí)效率,我們一般會(huì)事先準(zhǔn)備好教案,有了教案的支持可以讓同學(xué)聽(tīng)的快樂(lè),老師自己也講的輕松。關(guān)于好的幼兒園教案要怎么樣去寫呢?以下為小編為你收集整理的初一數(shù)學(xué)教案9篇,希望對(duì)大家有所幫助。執(zhí)教者于欣授課...
最新更新
熱門欄目