91啦丨国产丨蚪窝人妻首页,国产一区不卡,日本欧美大码aⅴ在线播放,西西人体444WwW高清大胆

幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

2024高一函數(shù)課件(模板11篇)

發(fā)布時間:2024-12-30

作為一名辛苦耕耘的教育工作者,有必要進行細致的教案準備工作,借助教案可以有效提升自己的教學能力。優(yōu)秀的教案都具備一些什么特點呢?下面是小編為大家整理的高一數(shù)學教案《函數(shù)概念》,希望能夠幫助到大家。

高一函數(shù)課件 篇1

第二十四教時

教材:倍角公式,推導(dǎo)和差化積及積化和差公式

目的:繼續(xù)復(fù)習鞏固倍角公式,加強對公式靈活運用的訓(xùn)練;同時,讓學生推導(dǎo)出和差化積和積化和差公式,并對此有所了解。

過程:

一、 復(fù)習倍角公式、半角公式和萬能公式的推導(dǎo)過程:

例一、 已知 , ,tan = ,tan = ,求2 +

(《教學與測試》P115 例三)

解:

又∵tan2 0,tan 0 ,

2 + =

例二、 已知sin cos = , ,求 和tan的'值

解:∵sin cos =

化簡得:

∵ 即

二、 積化和差公式的推導(dǎo)

sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

這套公式稱為三角函數(shù)積化和差公式,熟悉結(jié)構(gòu),不要求記憶,它的優(yōu)點在于將積式化為和差,有利于簡化計算。(在告知公式前提下)

例三、 求證:sin3sin3 + cos3cos3 = cos32

證:左邊 = (sin3sin)sin2 + (cos3cos)cos2

= (cos4 cos2)sin2 + (cos4 + cos2)cos2

= cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

= cos4cos2 + cos2 = cos2(cos4 + 1)

= cos22cos22 = cos32 = 右邊

原式得證

三、 和差化積公式的推導(dǎo)

若令 + = , = ,則 , 代入得:

這套公式稱為和差化積公式,其特點是同名的正(余)弦才能使用,它與積化和差公式相輔相成,配合使用。

例四、 已知cos cos = ,sin sin = ,求sin( + )的值

解:∵cos cos = , ①

sin sin = , ②

四、 小結(jié):和差化積,積化和差

五、 作業(yè):《課課練》P3637 例題推薦 13

P3839 例題推薦 13

P40 例題推薦 13

高一函數(shù)課件 篇2

教學目標

1、掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進行初步的應(yīng)用。

(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象。

(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題。

2、通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學習,滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力。

3、通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學生進行對稱美,簡潔美等審美教育,調(diào)動學生學習數(shù)學的積極性。

教學建議

教材分析

(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學思想的`進一步認識與理解。對數(shù)函數(shù)的概念,圖象與性質(zhì)的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關(guān)自然科學領(lǐng)域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎(chǔ)。

(2)本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì)。難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì)。由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學的重點。

(3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開。而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點。

教法建議

(1)對數(shù)函數(shù)在引入時,就應(yīng)從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。

(2)在本節(jié)課中結(jié)合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,從而提高學習興趣。

高一函數(shù)課件 篇3

概念反思:

變式:關(guān)于 的不等式 在 上恒成立,則實數(shù) 的范圍為__ ____

變式:設(shè) ,則函數(shù)( 的最小值是 .

課后拓展:

1.下列說法正確的.有 (填序號)

①若 ,當 時, ,則 在I上是增函數(shù).

②函數(shù) 在R上是增函數(shù).

③函數(shù) 在定義域上是增函數(shù).

④ 的單調(diào)區(qū)間是 .

2.若函數(shù) 的零點 , ,則所有滿足條件的 的和為?

3. 已知函數(shù) ( 為實常數(shù)).

(1)若 ,求 的單調(diào)區(qū)間;

(2)若 ,設(shè) 在區(qū)間 的最小值為 ,求 的表達式;

(3)設(shè) ,若函數(shù) 在區(qū)間 上是增函數(shù),求實數(shù) 的取值范圍.

解析:(1) 2分

∴ 的單調(diào)增區(qū)間為( ),(- ,0), 的單調(diào)減區(qū)間為(- ),( )

(2)由于 ,當 ∈[1,2]時,

10 即

20 即

30 即 時

綜上可得

(3) 在區(qū)間[1,2]上任取 、 ,且

(*)

∵ ∴

∴(*)可轉(zhuǎn)化為 對任意 、

10 當

20 由 得 解得

30 得 所以實數(shù) 的取值范圍是

高一函數(shù)課件 篇4

一、教學目標:

1、知識與技能:

(1) 結(jié)合實例,了解正整數(shù)指數(shù)函數(shù)的概念.

(2)能夠求出正整數(shù)指數(shù)函數(shù)的解析式,進一步研究其性質(zhì).

2、 過程與方法:

(1)讓學生借助實例,了解正整數(shù)指數(shù)函數(shù),體會從具體到一般,從個別到整體的研究過程和研究方法.

(2)從圖像上觀察體會正整數(shù)指數(shù)函數(shù)的性質(zhì),為這一章的學習作好鋪墊.

3、情感.態(tài)度與價值觀:使學生通過學習正整數(shù)指數(shù)函數(shù)體會學習指數(shù)函數(shù)的重要意義,增強學習研究函數(shù)的積極性和自信心.

二、教學重點: 正整數(shù)指數(shù)函數(shù)的定義.教學難點:正整數(shù)指數(shù)函數(shù)的解析式的確定.

三、學法指導(dǎo):學生觀察、思考、探究.教學方法:探究交流,講練結(jié)合。

四、教學過程

(一)新課導(dǎo)入

[互動過程1]:

(1)請你用列表表示1個細胞分裂次數(shù)分別

為1,2,3,4,5,6,7,8時,得到的細胞個數(shù);

(2)請你用圖像表示1個細胞分裂的次數(shù)n( )與得到的細

胞個數(shù)y之間的關(guān)系;

(3)請你寫出得到的細胞個數(shù)y與分裂次數(shù)n之間的關(guān)系式,試用

科學計算器計算細胞分裂15次、20次得到的`細胞個數(shù).

解:

(1)利用正整數(shù)指數(shù)冪的運算法則,可以算出1個細胞分裂1,2,3,

4,5,6,7,8次后,得到的細胞個數(shù)

分裂次數(shù) 1 2 3 4 5 6 7 8

細胞個數(shù) 2 4 8 16 32 64 128 256

(2)1個細胞分裂的次數(shù) 與得到的細胞個數(shù) 之間的關(guān)系可以用圖像表示,它的圖像是由一些孤立的點組成

(3)細胞個數(shù) 與分裂次數(shù) 之間的關(guān)系式為 ,用科學計算器算得 ,

所以細胞分裂15次、20次得到的細胞個數(shù)分別為32768和1048576.

探究:從本題中得到的函數(shù)來看,自變量和函數(shù)值分別是什么?此函數(shù)是什么類型的函數(shù)? 細胞個數(shù) 隨著分裂次數(shù) 發(fā)生怎樣變化?你從哪里看出?

小結(jié):從本題中可以看出我們得到的細胞分裂個數(shù)都是底數(shù)為2的指數(shù),而且指數(shù)是變量,取值為正整數(shù). 細胞個數(shù) 與分裂次數(shù) 之間的關(guān)系式為 .細胞個數(shù) 隨著分裂次數(shù) 的增多而逐漸增多.

[互動過程2]:問題2.電冰箱使用的氟化物的釋放破壞了大氣上層的臭氧層,臭氧含量Q近似滿足關(guān)系式Q=Q00.9975 t,其中Q0是臭氧的初始量,t是時間(年),這里設(shè)Q0=1.

(1)計算經(jīng)過20,40,60,80,100年,臭氧含量Q;

(2)用圖像表示每隔20年臭氧含量Q的變化;

(3)試分析隨著時間的增加,臭氧含量Q是增加還是減少.

解:(1)使用科學計算器可算得,經(jīng)過20,40,60,80,100年,臭氧含量Q的值分別為0.997520=0.9512, 0.997540=0.9047, 0.997560=0.8605, 0.997580=0.8185, 0.9975100=0.7786;

(2)用圖像表示每隔20年臭氧含量Q的變化如圖所

示,它的圖像是由一些孤立的點組成.

(3)通過計算和觀察圖形可以知道, 隨著時間的增加,

臭氧含量Q在逐漸減少.

探究:從本題中得到的函數(shù)來看,自變量和函數(shù)值分別

又是什么?此函數(shù)是什么類型的函數(shù)?,臭氧含量Q隨著

時間的增加發(fā)生怎樣變化?你從哪里看出?

小結(jié):從本題中可以看出我們得到的臭氧含量Q都是底數(shù)為0.9975的指數(shù),而且指數(shù)是變量,取值為正整數(shù). 臭氧含量Q近似滿足關(guān)系式Q=0.9975 t, 隨著時間的增加,臭氧含量Q在逐漸減少.

[互動過程3]:上面兩個問題所得的函數(shù)有沒有共同點?你能統(tǒng)一嗎?自變量的取值范圍又是什么?這樣的函數(shù)圖像又是什么樣的?為什么?

正整數(shù)指數(shù)函數(shù)的定義:一般地,函數(shù) 叫作正整數(shù)指數(shù)函數(shù),其中 是自變量,定義域是正整數(shù)集 .

說明: 1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點,這是因為函數(shù)的定義域是正整數(shù)集.2.在研究增長問題、復(fù)利問題、質(zhì)量濃度問題中常見這類函數(shù).

(二)、例題:某地現(xiàn)有森林面積為1000 ,每年增長5%,經(jīng)過 年,森林面積為 .寫出 , 間的函數(shù)關(guān)系式,并求出經(jīng)過5年,森林的面積.

分析:要得到 , 間的函數(shù)關(guān)系式,可以先一年一年的增長變化,找出規(guī)律,再寫出 , 間的函數(shù)關(guān)系式.

解: 根據(jù)題意,經(jīng)過一年, 森林面積為1000(1+5%) ;經(jīng)過兩年, 森林面積為1000(1+5%)2 ;經(jīng)過三年, 森林面積為1000(1+5%)3 ;所以 與 之間的函數(shù)關(guān)系式為 ,經(jīng)過5年,森林的面積為1000(1+5%)5=1276.28(hm2).

練習:課本練習1,2

補充例題:高一某學生家長去年年底到銀行存入20xx元,銀行月利率為2.38%,那么如果他第n個月后從銀行全部取回,他應(yīng)取回錢數(shù)為y,請寫出n與y之間的關(guān)系,一年后他全部取回,他能取回多少?

解:一個月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%),二個月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%)2;,三個月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%)3,, n個月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%)n; 所以n與y之間的關(guān)系為y=20xx(1+2.38%)n (nN+),一年后他全部取回,他能取回的錢數(shù)為y=20xx(1+2.38%)12.

補充練習:某工廠年產(chǎn)值逐年按8%的速度遞增,今年的年產(chǎn)值為200萬元,那么第n年后該廠的年產(chǎn)值為多少?

(三)、小結(jié):1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點,這是因為函數(shù)的定義域是正整數(shù)集.2.在研究增長問題、復(fù)利問題、質(zhì)量濃度問題中常見這類函數(shù).

(四)、作業(yè):課本習題3-1 1,2,3

高一函數(shù)課件 篇5

教學目標:

使學生理解函數(shù)的概念,明確決定函數(shù)的三個要素,學會求某些函數(shù)的定義域,掌握判定兩個函數(shù)是否相同的方法;使學生理解靜與動的辯證關(guān)系。

教學重點:

函數(shù)的概念,函數(shù)定義域的求法.

教學難點:

函數(shù)概念的理解.

教學過程:

Ⅰ.課題導(dǎo)入

[師]在初中,我們已經(jīng)學習了函數(shù)的概念,請同學們回憶一下,它是怎樣表述的?

(幾位學生試著表述,之后,教師將學生的回答梳理,再表述或者啟示學生將表述補充完整再條理表述).

設(shè)在一個變化的過程中有兩個變量x和y,如果對于x的每一個值,y都有惟一的值與它對應(yīng),那么就說y是x的函數(shù),x叫做自變量.

[師]我們學習了函數(shù)的概念,并且具體研究了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù),請同學們思考下面兩個問題:

問題一:y=1(xR)是函數(shù)嗎?

問題二:y=x與y=x2x 是同一個函數(shù)嗎?

(學生思考,很難回答)

[師]顯然,僅用上述函數(shù)概念很難回答這些問題,因此,需要從新的高度來認識函數(shù)概念(板書課題).

Ⅱ.講授新課

[師]下面我們先看兩個非空集合A、B的元素之間的一些對應(yīng)關(guān)系的例子.

在(1)中,對應(yīng)關(guān)系是乘2,即對于集合A中的每一個數(shù)n,集合B中都有一個數(shù)2n和它對應(yīng).

在(2)中,對應(yīng)關(guān)系是求平方,即對于集合A中的每一個數(shù)m,集合B中都有一個平方數(shù)m2和它對應(yīng).

在(3)中,對應(yīng)關(guān)系是求倒數(shù),即對于集合A中的每一個數(shù)x,集合B中都有一個數(shù) 1x 和它對應(yīng).

請同學們觀察3個對應(yīng),它們分別是怎樣形式的對應(yīng)呢?

[生]一對一、二對一、一對一.

[師]這3個對應(yīng)的共同特點是什么呢?

[生甲]對于集合A中的任意一個數(shù),按照某種對應(yīng)關(guān)系,集合B中都有惟一的數(shù)和它對應(yīng).

[師]生甲回答的很好,不但找到了3個對應(yīng)的共同特點,還特別強調(diào)了對應(yīng)關(guān)系,事實上,一個集合中的數(shù)與另一集合中的數(shù)的對應(yīng)是按照一定的關(guān)系對應(yīng)的,這是不能忽略的. 實際上,函數(shù)就是從自變量x的集合到函數(shù)值y的集合的一種對應(yīng)關(guān)系.

現(xiàn)在我們把函數(shù)的概念進一步敘述如下:(板書)

設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有惟一確定的數(shù)f(x)和它對應(yīng),那么就稱f︰AB為從集合A到集合B的一個函數(shù).

記作:y=f(x),xA

其中x叫自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值相對應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{y|y=f(x),xA}叫函數(shù)的值域.

一次函數(shù)f(x)=ax+b(a0)的定義域是R,值域也是R.對于R中的任意一個數(shù)x,在R中都有一個數(shù)f(x)=ax+b(a0)和它對應(yīng).

反比例函數(shù)f(x)=kx (k0)的定義域是A={x|x0},值域是B={f(x)|f(x)0},對于A中的任意一個實數(shù)x,在B中都有一個實數(shù)f(x)= kx (k0)和它對應(yīng).

二次函數(shù)f(x)=ax2+bx+c(a0)的定義域是R,值域是當a0時B={f(x)|f(x)4ac-b24a };當a0時,B={f(x)|f(x)4ac-b24a },它使得R中的任意一個數(shù)x與B中的數(shù)f(x)=ax2+bx+c(a0)對應(yīng).

函數(shù)概念用集合、對應(yīng)的語言敘述后,我們就很容易回答前面所提出的兩個問題.

y=1(xR)是函數(shù),因為對于實數(shù)集R中的任何一個數(shù)x,按照對應(yīng)關(guān)系函數(shù)值是1,在R中y都有惟一確定的值1與它對應(yīng),所以說y是x的函數(shù).

Y=x與y=x2x 不是同一個函數(shù),因為盡管它們的對應(yīng)關(guān)系一樣,但y=x的定義域是R,而y=x2x 的定義域是{x|x0}. 所以y=x與y=x2x 不是同一個函數(shù).

[師]理解函數(shù)的定義,我們應(yīng)該注意些什么呢?

(教師提出問題,啟發(fā)、引導(dǎo)學生思考、討論,并和學生一起歸納、總結(jié))

注意:①函數(shù)是非空數(shù)集到非空數(shù)集上的一種對應(yīng).

②符號f:AB表示A到B的一個函數(shù),它有三個要素;定義域、值域、對應(yīng)關(guān)系,三者缺一不可.

③集合A中數(shù)的任意性,集合B中數(shù)的惟一性.

④f表示對應(yīng)關(guān)系,在不同的函數(shù)中,f的具體含義不一樣.

⑤f(x)是一個符號,絕對不能理解為f與x的乘積.

[師]在研究函數(shù)時,除用符號f(x)表示函數(shù)外,還常用g(x) 、F(x)、G(x)等符號來表示

Ⅲ.例題分析

[例1]求下列函數(shù)的定義域.

(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x

分析:函數(shù)的定義域通常由問題的實際背景確定.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域.那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)x的集合.

解:(1)x-20,即x2時,1x-2 有意義

這個函數(shù)的定義域是{x|x2}

(2)3x+20,即x-23 時3x+2 有意義

函數(shù)y=3x+2 的定義域是[-23 ,+)

(3) x+10 x2

這個函數(shù)的定義域是{x|x{x|x2}=[-1,2)(2,+).

注意:函數(shù)的定義域可用三種方法表示:不等式、集合、區(qū)間.

從上例可以看出,當確定用解析式y(tǒng)=f(x)表示的函數(shù)的定義域時,常有以下幾種情況:

(1)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集R;

(2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合;

(3)如果f(x)是偶次根式,那么函數(shù)的定義域是使根號內(nèi)的式子不小于零的實數(shù)的集合;

(4)如果f(x)是由幾個部分的數(shù)學式子構(gòu)成的,那么函數(shù)的定義域是使各部分式子都有意義的實數(shù)的集合(即使每個部分有意義的`實數(shù)的集合的交集);

(5)如果f(x)是由實際問題列出的,那么函數(shù)的定義域是使解析式本身有意義且符合實際意義的實數(shù)的集合.

例如:一矩形的寬為x m,長是寬的2倍,其面積為y=2x2,此函數(shù)定義域為x0而不是全體實數(shù).

由以上分析可知:函數(shù)的定義域由數(shù)學式子本身的意義和問題的實際意義決定.

[師]自變量x在定義域中任取一個確定的值a時,對應(yīng)的函數(shù)值用符號f(a)來表示.例如,函數(shù)f(x)=x2+3x+1,當x=2時的函數(shù)值是f(2)=22+32+1=11

注意:f(a)是常量,f(x)是變量 ,f(a)是函數(shù)f(x)中當自變量x=a時的函數(shù)值.

下面我們來看求函數(shù)式的值應(yīng)該怎樣進行呢?

[生甲]求函數(shù)式的值,嚴格地說是求函數(shù)式中自變量x為某一確定的值時函數(shù)式的值,因此,求函數(shù)式的值,只要把函數(shù)式中的x換為相應(yīng)確定的數(shù)(或字母,或式子)進行計算即可.

[師]回答正確,不過要準確地求出函數(shù)式的值,計算時萬萬不可粗心大意噢!

[生乙]判定兩個函數(shù)是否相同,就看其定義域或?qū)?yīng)關(guān)系是否完全一致,完全一致時,這兩個函數(shù)就相同;不完全一致時,這兩個函數(shù)就不同.

[師]生乙的回答完整嗎?

[生]完整!(課本上就是如生乙所述那樣寫的).

[師]大家說,判定兩個函數(shù)是否相同的依據(jù)是什么?

[生]函數(shù)的定義.

[師]函數(shù)的定義有三個要素:定義域、值域、對應(yīng)關(guān)系,我們判定兩個函數(shù)是否相同為什么只看兩個要素:定義域和對應(yīng)關(guān)系,而不看值域呢?

(學生竊竊私語:是啊,函數(shù)的三個要素不是缺一不可嗎?怎不看值域呢?)

(無人回答)

[師]同學們預(yù)習時還是欠仔細,欠思考!我們做事情,看問題都要多問幾個為什么!函數(shù)的值域是由什么決定的,不就是由函數(shù)的定義域與對應(yīng)關(guān)系決定的嗎!關(guān)注了函數(shù)的定義域與對應(yīng)關(guān)系,三者就全看了!

(生恍然大悟,我們怎么就沒想到呢?)

[例2]求下列函數(shù)的值域

(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}

(3)y=x2+4x+3 (-31)

分析:求函數(shù)的值域應(yīng)確定相應(yīng)的定義域后再根據(jù)函數(shù)的具體形式及運算確定其值域.

對于(1)(2)可用直接法根據(jù)它們的定義域及對應(yīng)法則得到(1)(2)的值域.

對于(3)可借助數(shù)形結(jié)合思想利用它們的圖象得到值域,即圖象法.

解:(1)yR

(2)y{1,0,-1}

(3)畫出y=x2+4x+3(-31)的圖象,如圖所示,

當x[-3,1]時,得y[-1,8]

Ⅳ.課堂練習

課本P24練習17.

Ⅴ.課時小結(jié)

本節(jié)課我們學習了函數(shù)的定義(包括定義域、值域的概念)、區(qū)間的概念及求函數(shù)定義域的方法.學習函數(shù)定義應(yīng)注意的問題及求定義域時的各種情形應(yīng)該予以重視.(本小結(jié)的內(nèi)容可由學生自己來歸納)

Ⅵ.課后作業(yè)

課本P28,習題1、2. 文 章來

高一函數(shù)課件 篇6

案例背景:

對數(shù)函數(shù)是函數(shù)中又一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學領(lǐng)域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎(chǔ).

案例敘述:

(一).創(chuàng)設(shè)情境

(師):前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).

反函數(shù)的實質(zhì)是研究兩個函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個熟悉的.函數(shù)就是指數(shù)函數(shù).

(提問):什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?

(學生): 是指數(shù)函數(shù),它是存在反函數(shù)的.

(師):求反函數(shù)的步驟

(由一個學生口答求反函數(shù)的過程):

由 得 .又 的值域為 ,

所求反函數(shù)為 .

(師):那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對數(shù)函數(shù).

(二)新課

1.(板書) 定義:函數(shù) 的反函數(shù) 叫做對數(shù)函數(shù).

(師):由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個角度出發(fā).如從定義中你能了解對數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認識是什么?

(教師提示學生從反函數(shù)的三定與三反去認識,學生自主探究,合作交流)

(學生)對數(shù)函數(shù)的定義域為 ,對數(shù)函數(shù)的值域為 ,且底數(shù) 就是指數(shù)函數(shù)中的 ,故有著相同的限制條件 .

(在此基礎(chǔ)上,我們將一起來研究對數(shù)函數(shù)的圖像與性質(zhì).)

2.研究對數(shù)函數(shù)的圖像與性質(zhì)

(提問)用什么方法來畫函數(shù)圖像?

(學生1)利用互為反函數(shù)的兩個函數(shù)圖像之間的關(guān)系,利用圖像變換法畫圖.

(學生2)用列表描點法也是可以的。

請學生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.

(師)由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類型,故對數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.

具體操作時,要求學生做到:

(1) 指數(shù)函數(shù) 和 的圖像要盡量準確(關(guān)鍵點的位置,圖像的變化趨勢等).

(2) 畫出直線 .

(3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時可提示學生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分.

學生在筆記本完成具體操作,教師在學生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出

和 的圖像.(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標系內(nèi))如圖:

教師畫完圖后再利用電腦將 和 的圖像畫在同一坐標系內(nèi),如圖:

然后提出讓學生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個角度說明)

3. 性質(zhì)

(1) 定義域:

(2) 值域:

由以上兩條可說明圖像位于 軸的右側(cè).

(3)圖像恒過(1,0)

(4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點對稱,也不關(guān)于 軸對稱.

(5) 單調(diào)性:與 有關(guān).當 時,在 上是增函數(shù).即圖像是上升的

當 時,在 上是減函數(shù),即圖像是下降的.

之后可以追問學生有沒有最大值和最小值,當?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學生看著圖可以答出應(yīng)有兩種情況:

當 時,有 ;當 時,有 .

學生回答后教師可指導(dǎo)學生巧記這個結(jié)論的方法:當?shù)讛?shù)與真數(shù)在1的同側(cè)時函數(shù)值為正,當?shù)讛?shù)與真數(shù)在1的兩側(cè)時,函數(shù)值為負,并把它當作第(6)條性質(zhì)板書記下來.

最后教師在總結(jié)時,強調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶.(特別強調(diào)它們單調(diào)性的一致性)

對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用.

(三).簡單應(yīng)用

1. 研究相關(guān)函數(shù)的性質(zhì)

例1. 求下列函數(shù)的定義域:

(1) (2) (3)

先由學生依次列出相應(yīng)的不等式,其中特別要注意對數(shù)中真數(shù)和底數(shù)的條件限制.

2. 利用單調(diào)性比較大小

例2. 比較下列各組數(shù)的大小

(1) 與 ; (2) 與 ;

(3) 與 ; (4) 與 .

讓學生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構(gòu)造對數(shù)函數(shù)利用單調(diào)性來比大小.最后讓學生以其中一組為例寫出詳細的比較過程.

 三.拓展練習

練習:若 ,求 的取值范圍.

四.小結(jié)及作業(yè)

案例反思:

本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學生不適應(yīng),把握不住關(guān)鍵,因而在教學上采取教師逐步引導(dǎo),學生自主合作的方式,從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

在教學中一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地以反函數(shù)這條主線引導(dǎo)學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.

高一函數(shù)課件 篇7

教學目標

1.使學生理解函數(shù)單調(diào)性的概念,并能判斷一些簡單函數(shù)在給定區(qū)間上的單調(diào)性.

2.通過函數(shù)單調(diào)性概念的教學,培養(yǎng)學生分析問題、認識問題的能力.通過例題培養(yǎng)學生利用定義進行推理的邏輯思維能力.

3.通過本節(jié)課的教學,滲透數(shù)形結(jié)合的數(shù)學思想,對學生進行辯證唯物主義的教育.

教學重點與難點

教學重點:函數(shù)單調(diào)性的概念.

教學難點:函數(shù)單調(diào)性的判定.

教學過程設(shè)計

一、引入新課

師:請同學們觀察下面兩組在相應(yīng)區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性質(zhì)上的主要區(qū)別是什么?

(用投影幻燈給出兩組函數(shù)的圖象.)

第一組:

第二組:

生:第一組函數(shù),函數(shù)值y隨x的增大而增大;第二組函數(shù),函數(shù)值y隨x的增大而減小.

師:(手執(zhí)投影棒使之沿曲線移動)對.他(她)答得很好,這正是兩組函數(shù)的主要區(qū)別.當x變大時,第一組函數(shù)的函數(shù)值都變大,而第二組函數(shù)的函數(shù)值都變?。m然在每一組函數(shù)中,函數(shù)值變大或變小的方式并不相同,但每一組函數(shù)卻具有一種共同的性質(zhì).我們在學習一次函數(shù)、二次函數(shù)、反比例函數(shù)以及冪函數(shù)時,就曾經(jīng)根據(jù)函數(shù)的圖象研究過函數(shù)的函數(shù)值隨自變量的變大而變大或變小的性質(zhì).而這些研究結(jié)論是直觀地由圖象得到的.在函數(shù)的集合中,有很多函數(shù)具有這種性質(zhì),因此我們有必要對函數(shù)這種性質(zhì)作更進一步的一般性的討論和研究,這就是我們今天這一節(jié)課的內(nèi)容.

(點明本節(jié)課的內(nèi)容,既是曾經(jīng)有所認識的,又是新的知識,引起學生的注意.)

二、對概念的分析

(板書課題:)

師:請同學們打開課本第51頁,請××同學把增函數(shù)、減函數(shù)、單調(diào)區(qū)間的定義朗讀一遍.

(學生朗讀.)

師:好,請坐.通過剛才閱讀增函數(shù)和減函數(shù)的定義,請同學們思考一個問題:這種定義方法和我們剛才所討論的函數(shù)值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?

生:我認為是一致的.定義中的“當x1<x2時,都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當x1<x2時,都有f(x1)>f(x2)”描述了y隨x的增大而減少.

師:說得非常正確.定義中用了兩個簡單的'不等關(guān)系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數(shù)的單調(diào)遞增或單調(diào)遞減的性質(zhì).這就是數(shù)學的魅力!

(通過教師的情緒感染學生,激發(fā)學生學習數(shù)學的興趣.)

師:現(xiàn)在請同學們和我一起來看剛才的兩組圖中的第一個函數(shù)y=f1(x)和y=f2(x)的圖象,體會這種魅力.

(指圖說明.)

師:圖中y=f1(x)對于區(qū)間[a,b]上的任意x1,x2,當x1<x2時,都有f1(x1)<f1(x),因此y=f1(x)在區(qū)間[a,b]上是單調(diào)遞增的,區(qū)間[a,b]是函數(shù)y=f1(x)的單調(diào)增區(qū)間;而圖中y=f2(x)對于區(qū)間[a,b]上的任意x1,x2,當x1<x2時,都有f2(x1)>f2(x2),因此y=f2(x)在區(qū)間[a,b]上是單調(diào)遞減的,區(qū)間[a,b]是函數(shù)y=f2(x)的單調(diào)減區(qū)間.

(教師指圖說明分析定義,使學生把函數(shù)單調(diào)性的定義與直觀圖象結(jié)合起來,使新舊知識融為一體,加深對概念的理解.滲透數(shù)形結(jié)合分析問題的數(shù)學思想方法.)

師:因此我們可以說,增函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對應(yīng)……

(不把話說完,指一名學生接著說完,讓學生的思維始終跟著老師.)

生:較大的函數(shù)值的函數(shù).

師:那么減函數(shù)呢?

生:減函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對應(yīng)較小的函數(shù)值的函數(shù).

(學生可能回答得不完整,教師應(yīng)指導(dǎo)他說完整.)

師:好.我們剛剛以增函數(shù)和減函數(shù)的定義作了初步的分析,通過閱讀和分析你認為在定義中我們應(yīng)該抓住哪些關(guān)鍵詞語,才能更透徹地認識定義?

(學生思索.)

學生在高中階段以至在以后的學習中經(jīng)常會遇到一些概念(或定義),能否抓住定義中的關(guān)鍵詞語,是能否正確地、深入地理解和掌握概念的重要條件,更是學好數(shù)學及其他各學科的重要一環(huán).因此教師應(yīng)該教會學生如何深入理解一個概念,以培養(yǎng)學生分析問題,認識問題的能力.

(教師在學生思索過程中,再一次有感情地朗讀定義,并注意在關(guān)鍵詞語處適當加重語氣.在學生感到無從下手時,給以適當?shù)奶崾荆?/p>

生:我認為在定義中,有一個詞“給定區(qū)間”是定義中的關(guān)鍵詞語.

師:很好,我們在學習任何一個概念的時候,都要善于抓住定義中的關(guān)鍵詞語,在學習幾個相近的概念時還要注意區(qū)別它們之間的不同.增函數(shù)和減函數(shù)都是對相應(yīng)的區(qū)間而言的,離開了相應(yīng)的區(qū)間就根本談不上函數(shù)的增減性.請大家思考一個問題,我們能否說一個函數(shù)在x=5時是遞增或遞減的?為什么?

生:不能.因為此時函數(shù)值是一個數(shù).

師:對.函數(shù)在某一點,由于它的函數(shù)值是唯一確定的常數(shù)(注意這四個字“唯一確定”),因而沒有增減的變化.那么,我們能不能脫離區(qū)間泛泛談?wù)撃骋粋€函數(shù)是增函數(shù)或是減函數(shù)呢?你能否舉一個我們學過的例子?

生:不能.比如二次函數(shù)y=x2,在y軸左側(cè)它是減函數(shù),在y軸右側(cè)它是增函數(shù).因而我們不能說y=x2是增函數(shù)或是減函數(shù).

(在學生回答問題時,教師板演函數(shù)y=x2的圖像,從“形”上感知.)

師:好.他(她)舉了一個例子來幫助我們理解定義中的詞語“給定區(qū)間”.這說明是函數(shù)在某一個區(qū)間上的性質(zhì),但這不排斥有些函數(shù)在其定義域內(nèi)都是增函數(shù)或減函數(shù).因此,今后我們在談?wù)摵瘮?shù)的增減性時必須指明相應(yīng)的區(qū)間.

師:還有沒有其他的關(guān)鍵詞語?

生:還有定義中的“屬于這個區(qū)間的任意兩個”和“都有”也是關(guān)鍵詞語.

師:你答的很對.能解釋一下為什么嗎?

(學生不一定能答全,教師應(yīng)給予必要的提示.)

師:“屬于”是什么意思?

生:就是說兩個自變量x1,x2必須取自給定的區(qū)間,不能從其他區(qū)間上?。?/p>

師:如果是閉區(qū)間的話,能否取自區(qū)間端點?

生:可以.

師:那么“任意”和“都有”又如何理解?

生:“任意”就是指不能取特定的值來判斷函數(shù)的增減性,而“都有”則是說只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).

師:能不能構(gòu)造一個反例來說明“任意”呢?

(讓學生思考片刻.)

生:可以構(gòu)造一個反例.考察函數(shù)y=x2,在區(qū)間[-2,2]上,如果取兩個特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數(shù),那就錯了.

師:那么如何來說明“都有”呢?

生:y=x2在[-2,2]上,當x1=-2,x2=-1時,有f(x1)>f(x2);當x1=1,x2=2時,有f(x1)<f(x2),這時就不能說y=x2,在[-2,2]上是增函數(shù)或減函數(shù).

師:好極了!通過分析定義和舉反例,我們知道要判斷函數(shù)y=f(x)在某個區(qū)間內(nèi)是增函數(shù)或減函數(shù),不能由特定的兩個點的情況來判斷,而必須嚴格依照定義在給定區(qū)間內(nèi)任取兩個自變量x1,x2,根據(jù)它們的函數(shù)值f(x1)和f(x2)的大小來判定函數(shù)的增減性.

(教師通過一系列的設(shè)問,使學生處于積極的思維狀態(tài),從抽象到具體,并通過反例的反襯,使學生加深對定義的理解.在概念教學中,反例常常幫助學生更深刻地理解概念,鍛煉學生的發(fā)散思維能力.)

師:反過來,如果我們已知f(x)在某個區(qū)間上是增函數(shù)或是減函數(shù),那么,我們就可以通過自變量的大小去判定函數(shù)值的大小,也可以由函數(shù)值的大小去判定自變量的大?。匆话愠闪t特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關(guān)系.

(用辯證法的原理來解釋數(shù)學知識,同時用數(shù)學知識去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內(nèi)涵和外延,培養(yǎng)學生學習的能力.)

三、概念的應(yīng)用

例1 圖4所示的是定義在閉區(qū)間[-5,5]上的函數(shù)f(x)的圖象,根據(jù)圖象說出f(x)的單調(diào)區(qū)間,并回答:在每一個單調(diào)區(qū)間上,f(x)是增函數(shù)還是減函數(shù)?

(用投影幻燈給出圖象.)

生甲:函數(shù)y=f(x)在區(qū)間[-5,-2],[1,3]上是減函數(shù),因此[-5,-2],[1,3]是函數(shù)y=f(x)的單調(diào)減區(qū)間;在區(qū)間[-2,1],[3,5]上是增函數(shù),因此[-2,1],[3,5]是函數(shù)y=f(x)的單調(diào)增區(qū)間.

生乙:我有一個問題,[-5,-2]是函數(shù)f(x)的單調(diào)減區(qū)間,那么,是否可認為(-5,-2)也是f(x)的單調(diào)減區(qū)間呢?

師:問得好.這說明你想的很仔細,思考問題很嚴謹.容易證明:若f(x)在[a,b]上單調(diào)(增或減),則f(x)在(a,b)上單調(diào)(增或減).反之不然,你能舉出反例嗎?一般來說.若f(x)在[a,(增或減).反之不然.

例2 證明函數(shù)f(x)=3x+2在(-∞,+∞)上是增函數(shù).

師:從函數(shù)圖象上觀察固然形象,但在理論上不夠嚴格,尤其是有些函數(shù)不易畫出圖象,因此必須學會根據(jù)解析式和定義從數(shù)量上分析辨認,這才是我們研究函數(shù)單調(diào)性的基本途徑.

(指出用定義證明的必要性.)

師:怎樣用定義證明呢?請同學們思考后在筆記本上寫出證明過程.

(教師巡視,并指定一名中等水平的學生在黑板上板演.學生可能會對如何比較f(x1)和f(x2)的大小關(guān)系感到無從入手,教師應(yīng)給以啟發(fā).)

師:對于f(x1)和f(x2)我們?nèi)绾伪容^它們的大小呢?我們知道對兩個實數(shù)a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號來決定兩個數(shù)的大小關(guān)系.

生:(板演)設(shè)x1,x2是(-∞,+∞)上任意兩個自變量,當x1<x2時,

f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,

所以f(x)是增函數(shù).

師:他的證明思路是清楚的.一開始設(shè)x1,x2是(-∞,+∞)內(nèi)任意兩個自變量,并設(shè)x1<x2(邊說邊用彩色粉筆在相應(yīng)的語句下劃線,并標注“①→設(shè)”),然后看f(x1)-f(x2),這一步是證明的關(guān)鍵,再對式子進行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標注”②→作差,變形”).但美中不足的是他沒能說明為什么f(x1)-f(x2)<0,沒有用到開始的假設(shè)“x1<x2”,不要以為其顯而易見,在這里一定要對變形后的式子說明其符號.應(yīng)寫明“因為x1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號”(在黑板上板演,并注明“③→定符號”).最后,作為證明題一定要有結(jié)論,我們把它稱之為第四步“下結(jié)論”(在相應(yīng)位置標注“④→下結(jié)論”).

這就是我們用定義證明函數(shù)增減性的四個步驟,請同學們記?。枰赋龅氖堑诙?,如果函數(shù)y=f(x)在給定區(qū)間上恒大于零,也可以小.

(對學生的做法進行分析,把證明過程步驟化,可以形成思維的定勢.在學生剛剛接觸一個新的知識時,思維定勢對理解知識本身是有益的,同時對學生養(yǎng)成一定的思維習慣,形成一定的解題思路也是有幫助的.)

調(diào)函數(shù)嗎?并用定義證明你的結(jié)論.

師:你的結(jié)論是什么呢?

上都是減函數(shù),因此我覺得它在定義域(-∞,0)∪(0,+∞)上是減函數(shù).

生乙:我有不同的意見,我認為這個函數(shù)不是整個定義域內(nèi)的減函數(shù),因為它不符合減函數(shù)的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內(nèi)的減函數(shù).

生:也不能這樣認為,因為由圖象可知,它分別在(-∞,0)和(0,+∞)上都是減函數(shù).

域內(nèi)的增函數(shù),也不是定義域內(nèi)的減函數(shù),它在(-∞,0)和(0,+∞)每一個單調(diào)區(qū)間內(nèi)都是減函數(shù).因此在函數(shù)的幾個單調(diào)增(減)區(qū)間之間不要用符號“∪”連接.另外,x=0不是定義域中的元素,此時不要寫成閉區(qū)間.

上是減函數(shù).

(教師巡視.對學生證明中出現(xiàn)的問題給予點拔.可依據(jù)學生的問題,給出下面的提示:

(1)分式問題化簡方法一般是通分.

(2)要說明三個代數(shù)式的符號:k,x1·x2,x2-x1.

要注意在不等式兩邊同乘以一個負數(shù)的時候,不等號方向要改變.

對學生的解答進行簡單的分析小結(jié),點出學生在證明過程中所出現(xiàn)的問題,引起全體學生的重視.)

四、課堂小結(jié)

師:請同學小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是應(yīng)該特別注意的?

(請一個思路清晰,善于表達的學生口述,教師可從中給予提示.)

生:這節(jié)課我們學習了函數(shù)單調(diào)性的定義,要特別注意定義中“給定區(qū)間”、“屬于”、“任意”、“都有”這幾個關(guān)鍵詞語;在寫單調(diào)區(qū)間時不要輕易用并集的符號連接;最后在用定義證明時,應(yīng)該注意證明的四個步驟.

五、作業(yè)

1.課本P53練習第1,2,3,4題.

數(shù).

=a(x1-x2)(x1+x2)+b(x1-x2)

=(x1-x2)[a(x1+x2)+b].(*)

+b>0.由此可知(*)式小于0,即f(x1)<f(x2).

課堂教學設(shè)計說明

是函數(shù)的一個重要性質(zhì),是研究函數(shù)時經(jīng)常要注意的一個性質(zhì).并且在比較幾個數(shù)的大小、對函數(shù)作定性分析、以及與其他知識的綜合應(yīng)用上都有廣泛的應(yīng)用.對學生來說,早已有所知,然而沒有給出過定義,只是從直觀上接觸過這一性質(zhì).學生對此有一定的感性認識,對概念的理解有一定好處,但另一方面學生也會覺得是已經(jīng)學過的知識,感覺乏味.因此,在設(shè)計教案時,加強了對概念的分析,希望能夠使學生認識到看似簡單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.

另外,對概念的分析是在引進一個新概念時必須要做的,對概念的深入的正確的理解往往是學生認知過程中的難點.因此在本教案的設(shè)計過程中突出對概念的分析不僅僅是為了分析函數(shù)單調(diào)性的定義,而且想讓學生對如何學會、弄懂一個概念有初步的認識,并且在以后的學習中學有所用.

還有,使用函數(shù)單調(diào)性定義證明是一個難點,學生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學生理解概念,也可以對學生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學習的不等式證明方法中的比較化的基本思路,現(xiàn)在提出要求,對今后的教學作一定的鋪墊.

高一函數(shù)課件 篇8

教學目標:

掌握二倍角的正弦、余弦、正切公式,能用上述公式進行簡單的求值、化簡、恒等證明;引導(dǎo)學生發(fā)現(xiàn)數(shù)學規(guī)律,讓學生體會化歸這一基本數(shù)學思想在發(fā)現(xiàn)中所起的作用,培養(yǎng)學生的創(chuàng)新意識.

教學重點:

二倍角公式的推導(dǎo)及簡單應(yīng)用.

教學難點:

理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù).

教學過程:

Ⅰ.課題導(dǎo)入

前一段時間,我們共同探討了和角公式、差角公式,今天,我們繼續(xù)探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當兩角相等時,兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請同學們試推.

先回憶和角公式

sin(α+β)=sinαcosβ+cosαsinβ

當α=β時,sin(α+β)=sin2α=2sinαcosα

即:sin2α=2sinαcosα(S2α)

cos(α+β)=cosαcosβ-sinαsinβ

當α=β時cos(α+β)=cos2α=cos2α-sin2α

即:cos2α=cos2α-sin2α(C2α)

tan(α+β)=tanα+tanβ1-tanαtanβ

當α=β時,tan2α=2tanα1-tan2α

Ⅱ.講授新課

同學們推證所得結(jié)果是否與此結(jié)果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α

同學們是否也考慮到了呢?

另外運用這些公式要注意如下幾點:

(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)時才成立,否則不成立(因為當α=π2 +kπ,k∈Z時,tanα的值不存在;當α=π4 +kπ2 ,k∈Z時tan2α的值不存在).

當α=π2 +kπ(k∈Z)時,雖然tanα的`值不存在,但tan2α的值是存在的,這時求tan2α的值可利用誘導(dǎo)公式:

即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0

(2)在一般情況下,sin2α≠2sinα

例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情況下,才有可能成立[當且僅當α=kπ(k∈Z)時,sin2α=2sinα=0成立].

同樣在一般情況下cos2α≠2cosαtan2α≠2tanα

(3)倍角公式不僅可運用于將2α作為α的2倍的情況,還可以運用于諸如將4α作為2α的2倍,將α作為 α2 的2倍,將 α2 作為 α4 的2倍,將3α作為 3α2 的2倍等等.

高一函數(shù)課件 篇9

一、教材分析

本節(jié)課選自《普通高中課程標準數(shù)學教科書-必修1》(人教A版)《1.2.1 函數(shù)的概念》共3課時,本節(jié)課是第1課時。

托馬斯說:“函數(shù)概念是近代數(shù)學思想之花”。 生活中的許多現(xiàn)象如物體運動,氣溫升降,投資理財?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認識世界和預(yù)測未來的重要工具。

函數(shù)是數(shù)學的重要的基礎(chǔ)概念之一,是高等數(shù)學重多學科的基礎(chǔ)概念和重要的研究對象。同時函數(shù)也是物理學等其他學科的重要基礎(chǔ)知識和研究工具,教學內(nèi)容中蘊涵著極其豐富的辯證思想。函數(shù)的的重要性正如恩格斯所說:“數(shù)學中的轉(zhuǎn)折點是笛卡爾的變數(shù),有了變數(shù),運動就進入了數(shù)學;有了變數(shù),辯證法就進入了數(shù)學”。

二、學生學習情況分析

函數(shù)是中學數(shù)學的主體內(nèi)容,學生在中學階段對函數(shù)的認識分三個階段:(一)初中從運動變化的角度來刻畫函數(shù),初步認識正比例、反比例、一次和二次函數(shù);(二)高中用集合與對應(yīng)的觀點來刻畫函數(shù),研究函數(shù)的性質(zhì),學習典型的對、指、冪和三解函數(shù);(三)高中用導(dǎo)數(shù)工具研究函數(shù)的單調(diào)性和最值。

1.有利條件

現(xiàn)代教育心理學的研究認為,有效的概念教學是建立在學生已有知識結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計教學的過程中必須注意在學生已有知識結(jié)構(gòu)中尋找新概念的固著點,引導(dǎo)學生通過同化或順應(yīng),掌握新概念,進而完善知識結(jié)構(gòu)。

初中用運動變化的觀點對函數(shù)進行定義的,它反映了歷史上人們對它的一種認識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學生認知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個程度是合適的。也為我們用集合與對應(yīng)的觀點研究函數(shù)打下了一定的'基礎(chǔ)。

2.不利條件

用集合與對應(yīng)的觀點來定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對學生的理解能力是一個挑戰(zhàn),是本節(jié)課教學的一個不利條件。

三、教學目標分析

課標要求:通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學模型,在此基礎(chǔ)上學習用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域.

1.知識與能力目標:

⑴能從集合與對應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;

⑵理解函數(shù)的三要素的含義及其相互關(guān)系;

⑶會求簡單函數(shù)的定義域和值域

2.過程與方法目標:

⑴通過豐富實例,使學生建立起函數(shù)概念的背景,體會函數(shù)是描述變量之間依賴關(guān)系的數(shù)學模型;

⑵在函數(shù)實例中,通過對關(guān)鍵詞的強調(diào)和引導(dǎo)使學發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用.

3.情感、態(tài)度與價值觀目標:

感受生活中的數(shù)學,感悟事物之間聯(lián)系與變化的辯證唯物主義觀點。

四、教學重點、難點分析

1.教學重點:對函數(shù)概念的理解,用集合與對應(yīng)的語言來刻畫函數(shù);

重點依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對應(yīng)的語言來刻畫函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對應(yīng)關(guān)系”。 但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對y?1這樣的函數(shù)用運動變化的觀點也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個數(shù)集之間的一種對應(yīng)關(guān)系,按照這種觀點,使我們對函數(shù)概念有了更深一層的認識,也很容易說明y?1這函數(shù)表達式。因此,分析兩種函數(shù)概念的關(guān)系,讓學生融會貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的重點。

突出重點:重點的突出依賴于對函數(shù)概念本質(zhì)屬性的把握,使學生通過表面的語言描述抓住概念的精髓。

2.教學難點:第一:從實際問題中提煉出抽象的概念;第二:符號“y=f(x)”的含義的理解.

難點依據(jù):數(shù)學語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負遷移。

突破難點:難點的突破要依托豐富的實例,從集合與對應(yīng)的角度恰當?shù)匾龑?dǎo),而對抽象符號的理解則要結(jié)合函數(shù)的三要素和小例子進行說明。

五、教法與學法分析

1.教法分析

本節(jié)課我主要采用教師導(dǎo)學法、知識遷移法和知識對比法,從學生熟悉的豐富實例出發(fā),關(guān)注學生的原有的知識基礎(chǔ),注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。

2.學法分析

在教學過程中我注意在教學中引導(dǎo)學生用模型法分析函數(shù)問題、通過自主學習法總結(jié)“區(qū)間”的知識。

高一函數(shù)課件 篇10

一、本課數(shù)學內(nèi)容的本質(zhì)、地位、作用分析

普通高中課標教材必修1共安排了三章內(nèi)容,第一章是《集合與函數(shù)的概念》,第二章是《基本初等函數(shù)(Ⅰ)》,第三章是《函數(shù)的應(yīng)用》。第三章編排了兩塊內(nèi)容,第一部分是函數(shù)與方程,第二部分是函數(shù)模型及其應(yīng)用。本節(jié)課方程的根與函數(shù)的零點,正是在這種建立和運用函數(shù)模型的大背景下展開的。本節(jié)課的主要教學內(nèi)容是函數(shù)零點的定義和函數(shù)零點存在的判定依據(jù),這兩者顯然是為下節(jié)“用二分法求方程近似解”這一“函數(shù)的應(yīng)用”服務(wù)的,同時也為后續(xù)學習的算法埋下伏筆。由此可見,它起著承上啟下的作用,與整章、整冊綜合成一個整體,學好本節(jié)意義重大。

函數(shù)在數(shù)學中占據(jù)著不可替代的核心地位,根本原因之一在于函數(shù)與其他知識具有廣泛的聯(lián)系,而函數(shù)的零點就是其中的一個鏈結(jié)點,它從不同的角度,將數(shù)與形,函數(shù)與方程有機地聯(lián)系在一起。方程本身就是函數(shù)的一部分,用函數(shù)的觀點來研究方程,就是將局部放入整體中研究,進而對整體和局部都有一個更深層次的理解,并學會用聯(lián)系的觀點解決問題,為后面函數(shù)與不等式和數(shù)列等其他知識的聯(lián)系奠定基礎(chǔ)。

二、教學目標分析

本節(jié)內(nèi)容包含三大知識點:

1、函數(shù)零點的定義;

2、方程的根與函數(shù)零點的等價關(guān)系;

3、零點存在性定理。

結(jié)合本節(jié)課引入三大知識點的方法,設(shè)定本節(jié)課的知識與技能目標如下:

1.結(jié)合方程根的幾何意義,理解函數(shù)零點的定義;

2.結(jié)合零點定義的探究,掌握方程的實根與其相應(yīng)函數(shù)零點之間的等價關(guān)系;

3.結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點個數(shù)和所在區(qū)間的方法.

本節(jié)課是學生在學習了函數(shù)的性質(zhì),具備了初步的數(shù)形結(jié)合知識的基礎(chǔ)上,通過對特殊函數(shù)圖象的分析進行展開的,是培養(yǎng)學生“化歸與轉(zhuǎn)化思想”,“數(shù)形結(jié)合思想”,“函數(shù)與方程思想”的優(yōu)質(zhì)載體。

結(jié)合本節(jié)課教學主線的設(shè)計,設(shè)定本節(jié)課的過程與方法目標如下:

1.通過化歸與轉(zhuǎn)化思想的引導(dǎo),培養(yǎng)學生從已有認知結(jié)構(gòu)出發(fā),尋求解決棘手問題方法的習慣;

2.通過數(shù)形結(jié)合思想的滲透,培養(yǎng)學生主動應(yīng)用數(shù)學思想的意識;

3.通過習題與探究知識的相關(guān)性設(shè)置,引導(dǎo)學生深入探究得出判斷函數(shù)的零點個數(shù)和所在區(qū)間的方法;

4.通過對函數(shù)與方程思想的不斷剖析,促進學生對知識靈活應(yīng)用的能力。

由于本節(jié)課將以教師引導(dǎo),學生探究為主體形式,故設(shè)定本節(jié)課的'情感、態(tài)度與價值觀目標如下:

1.讓學生體驗化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學思想在解決數(shù)學問題時的意義與價值;

2.培養(yǎng)學生鍥而不舍的探索精神和嚴密思考的良好學習習慣。

3.使學生感受學習、探索發(fā)現(xiàn)的樂趣與成功感。

三、教學問題診斷

學生具備的認知基礎(chǔ):

1.基本初等函數(shù)的圖象和性質(zhì);

2.一元二次方程的根和相應(yīng)函數(shù)圖象與x軸的聯(lián)系;

3.將數(shù)與形相結(jié)合轉(zhuǎn)化的意識。

學生欠缺的實際能力:

1.主動應(yīng)用數(shù)形結(jié)合思想解決問題的意識還不強;

2.將未知問題已知化,將復(fù)雜問題簡單化的化歸意識淡薄;

3.從直觀到抽象的概括總結(jié)能力還不夠;

4.概念的內(nèi)涵與外延的探究意識有待提高。

對本節(jié)課的教學,教材是利用一組一元二次方程和二次函數(shù)的關(guān)系來引入函數(shù)零點的。這樣處理,主要是想讓學生在原有二次函數(shù)的認知基礎(chǔ)上,使其知識得到自然的發(fā)生發(fā)展。理解了像二次函數(shù)這樣簡單的函數(shù)零點,再來理解其他復(fù)雜的函數(shù)零點就會容易一些。但學生對如何解一元二次方程以及二次函數(shù)的圖象早就熟練了,這樣的引入過程使學生感到平淡,激發(fā)不起他們的興趣,他們對零點的理解也只會浮于表面,也無法使其體會引入函數(shù)零點的必要性,理解不了方程根存在的本質(zhì)原因是零點的存在。

教材是通過由直觀到抽象的過程,才得到判斷函數(shù)y=f(x)在(a,b)內(nèi)有零點的一種條件的,如果不能有效地對該過程進行引導(dǎo),容易出現(xiàn)學生被動接受,盲目記憶的結(jié)果,而喪失了對學生應(yīng)用數(shù)學思想方法的意識進行培養(yǎng)的機會。

教材中零點存在性定理只表述了存在零點的條件,但對存在零點的個數(shù)并未多做說明,這就要求教師對該定理的內(nèi)涵和外延要有清晰的把握,引導(dǎo)學生探究出只存在一個零點的條件,否則學生對定理的內(nèi)容很容易心存疑慮。

四、本節(jié)課的教法特點以及預(yù)期效果分析

本節(jié)課教法的幾大特點總結(jié)如下:

1.以問題為主線貫穿始終;

2.精心設(shè)置引導(dǎo)性的語言放手讓學生探究;

3.注重在引導(dǎo)學生探究問題解法的過程中滲透數(shù)學思想;

4.在探究過程中引入新知識點,在引入新知識點后適時歸納總結(jié),進行探究階段性成果的應(yīng)用。

由于所設(shè)置的主線問題具有很高的探究價值,所以預(yù)期學生熱情會很高,積極性調(diào)動起來,那整節(jié)課才能活起來;

由于為了更好地組織學生探究所設(shè)置的引導(dǎo)性語言,重在去挖掘?qū)W生內(nèi)心真實的想法和他們最真實體會到的困難,所以通過學生活動會更多地暴露他們在基礎(chǔ)知識掌握方面的缺憾,免不了要隨時糾正對過往知識的錯誤理解;

因為在探究過程中不斷滲透數(shù)學思想,學生對親身經(jīng)歷的解題方法就會有更深的體會,主動應(yīng)用數(shù)學思想的意識在上升,對于主線問題也應(yīng)該可以迎刃而解;

因為在探究過程中引入新知識點,學生對新知識產(chǎn)生的必要性會有更深刻的體會和認識,同時在新知識產(chǎn)生后,又適時地加以應(yīng)用,學生對新知識的應(yīng)用能力不斷提高。

高一函數(shù)課件 篇11

教學目標:

使學生理解函數(shù)的概念,明確決定函數(shù)的三個要素,學會求某些函數(shù)的定義域,掌握判定兩個函數(shù)是否相同的方法;使學生理解靜與動的辯證關(guān)系.

教學重點:

函數(shù)的概念,函數(shù)定義域的求法.

教學難點:

函數(shù)概念的理解.

教學過程:

Ⅰ.課題導(dǎo)入

[師]在初中,我們已經(jīng)學習了函數(shù)的概念,請同學們回憶一下,它是怎樣表述的?

(幾位學生試著表述,之后,教師將學生的回答梳理,再表述或者啟示學生將表述補充完整再條理表述).

設(shè)在一個變化的過程中有兩個變量x和y,如果對于x的每一個值,y都有惟一的值與它對應(yīng),那么就說y是x的函數(shù),x叫做自變量.

[師]我們學習了函數(shù)的概念,并且具體研究了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù),請同學們思考下面兩個問題:

問題一:y=1(xR)是函數(shù)嗎?

問題二:y=x與y=x2x 是同一個函數(shù)嗎?

(學生思考,很難回答)

[師]顯然,僅用上述函數(shù)概念很難回答這些問題,因此,需要從新的高度來認識函數(shù)概念(板書課題).

Ⅱ.講授新課

[師]下面我們先看兩個非空集合A、B的元素之間的一些對應(yīng)關(guān)系的例子.

在(1)中,對應(yīng)關(guān)系是乘2,即對于集合A中的每一個數(shù)n,集合B中都有一個數(shù)2n和它對應(yīng).

在(2)中,對應(yīng)關(guān)系是求平方,即對于集合A中的每一個數(shù)m,集合B中都有一個平方數(shù)m2和它對應(yīng).

在(3)中,對應(yīng)關(guān)系是求倒數(shù),即對于集合A中的每一個數(shù)x,集合B中都有一個數(shù) 1x 和它對應(yīng).

請同學們觀察3個對應(yīng),它們分別是怎樣形式的對應(yīng)呢?

[生]一對一、二對一、一對一.

[師]這3個對應(yīng)的共同特點是什么呢?

[生甲]對于集合A中的任意一個數(shù),按照某種對應(yīng)關(guān)系,集合B中都有惟一的數(shù)和它對應(yīng).

[師]生甲回答的很好,不但找到了3個對應(yīng)的共同特點,還特別強調(diào)了對應(yīng)關(guān)系,事實上,一個集合中的數(shù)與另一集合中的數(shù)的對應(yīng)是按照一定的關(guān)系對應(yīng)的,這是不能忽略的. 實際上,函數(shù)就是從自變量x的集合到函數(shù)值y的集合的一種對應(yīng)關(guān)系.

現(xiàn)在我們把函數(shù)的概念進一步敘述如下:(板書)

設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有惟一確定的數(shù)f(x)和它對應(yīng),那么就稱f︰AB為從集合A到集合B的一個函數(shù).

記作:y=f(x),xA

其中x叫自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值相對應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{y|y=f(x),xA}叫函數(shù)的值域.

一次函數(shù)f(x)=ax+b(a0)的定義域是R,值域也是R.對于R中的任意一個數(shù)x,在R中都有一個數(shù)f(x)=ax+b(a0)和它對應(yīng).

反比例函數(shù)f(x)=kx (k0)的定義域是A={x|x0},值域是B={f(x)|f(x)0},對于A中的任意一個實數(shù)x,在B中都有一個實數(shù)f(x)= kx (k0)和它對應(yīng).

二次函數(shù)f(x)=ax2+bx+c(a0)的定義域是R,值域是當a0時B={f(x)|f(x)4ac-b24a };當a0時,B={f(x)|f(x)4ac-b24a },它使得R中的任意一個數(shù)x與B中的數(shù)f(x)=ax2+bx+c(a0)對應(yīng).

函數(shù)概念用集合、對應(yīng)的語言敘述后,我們就很容易回答前面所提出的兩個問題.

y=1(xR)是函數(shù),因為對于實數(shù)集R中的任何一個數(shù)x,按照對應(yīng)關(guān)系函數(shù)值是1,在R中y都有惟一確定的值1與它對應(yīng),所以說y是x的函數(shù).

Y=x與y=x2x 不是同一個函數(shù),因為盡管它們的對應(yīng)關(guān)系一樣,但y=x的定義域是R,而y=x2x 的定義域是{x|x0}. 所以y=x與y=x2x 不是同一個函數(shù).

[師]理解函數(shù)的定義,我們應(yīng)該注意些什么呢?

(教師提出問題,啟發(fā)、引導(dǎo)學生思考、討論,并和學生一起歸納、總結(jié))

注意:①函數(shù)是非空數(shù)集到非空數(shù)集上的一種對應(yīng).

②符號f:AB表示A到B的一個函數(shù),它有三個要素;定義域、值域、對應(yīng)關(guān)系,三者缺一不可.

③集合A中數(shù)的任意性,集合B中數(shù)的惟一性.

④f表示對應(yīng)關(guān)系,在不同的函數(shù)中,f的具體含義不一樣.

⑤f(x)是一個符號,絕對不能理解為f與x的乘積.

[師]在研究函數(shù)時,除用符號f(x)表示函數(shù)外,還常用g(x) 、F(x)、G(x)等符號來表示

Ⅲ.例題分析

[例1]求下列函數(shù)的定義域.

(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x

分析:函數(shù)的定義域通常由問題的實際背景確定.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域.那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)x的集合.

解:(1)x-20,即x2時,1x-2 有意義

這個函數(shù)的定義域是{x|x2}

(2)3x+20,即x-23 時3x+2 有意義

函數(shù)y=3x+2 的定義域是[-23 ,+)

(3) x+10 x2

這個函數(shù)的定義域是{x|x{x|x2}=[-1,2)(2,+).

注意:函數(shù)的定義域可用三種方法表示:不等式、集合、區(qū)間.

從上例可以看出,當確定用解析式y(tǒng)=f(x)表示的函數(shù)的定義域時,常有以下幾種情況:

(1)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集R;

(2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合;

(3)如果f(x)是偶次根式,那么函數(shù)的定義域是使根號內(nèi)的式子不小于零的實數(shù)的集合;

(4)如果f(x)是由幾個部分的數(shù)學式子構(gòu)成的,那么函數(shù)的定義域是使各部分式子都有意義的實數(shù)的`集合(即使每個部分有意義的實數(shù)的集合的交集);

(5)如果f(x)是由實際問題列出的,那么函數(shù)的定義域是使解析式本身有意義且符合實際意義的實數(shù)的集合.

例如:一矩形的寬為x m,長是寬的2倍,其面積為y=2x2,此函數(shù)定義域為x0而不是全體實數(shù).

由以上分析可知:函數(shù)的定義域由數(shù)學式子本身的意義和問題的實際意義決定.

[師]自變量x在定義域中任取一個確定的值a時,對應(yīng)的函數(shù)值用符號f(a)來表示.例如,函數(shù)f(x)=x2+3x+1,當x=2時的函數(shù)值是f(2)=22+32+1=11

注意:f(a)是常量,f(x)是變量 ,f(a)是函數(shù)f(x)中當自變量x=a時的函數(shù)值.

下面我們來看求函數(shù)式的值應(yīng)該怎樣進行呢?

[生甲]求函數(shù)式的值,嚴格地說是求函數(shù)式中自變量x為某一確定的值時函數(shù)式的值,因此,求函數(shù)式的值,只要把函數(shù)式中的x換為相應(yīng)確定的數(shù)(或字母,或式子)進行計算即可.

[師]回答正確,不過要準確地求出函數(shù)式的值,計算時萬萬不可粗心大意噢!

[生乙]判定兩個函數(shù)是否相同,就看其定義域或?qū)?yīng)關(guān)系是否完全一致,完全一致時,這兩個函數(shù)就相同;不完全一致時,這兩個函數(shù)就不同.

[師]生乙的回答完整嗎?

[生]完整!(課本上就是如生乙所述那樣寫的).

[師]大家說,判定兩個函數(shù)是否相同的依據(jù)是什么?

[生]函數(shù)的定義.

[師]函數(shù)的定義有三個要素:定義域、值域、對應(yīng)關(guān)系,我們判定兩個函數(shù)是否相同為什么只看兩個要素:定義域和對應(yīng)關(guān)系,而不看值域呢?

(學生竊竊私語:是啊,函數(shù)的三個要素不是缺一不可嗎?怎不看值域呢?)

(無人回答)

[師]同學們預(yù)習時還是欠仔細,欠思考!我們做事情,看問題都要多問幾個為什么!函數(shù)的值域是由什么決定的,不就是由函數(shù)的定義域與對應(yīng)關(guān)系決定的嗎!關(guān)注了函數(shù)的定義域與對應(yīng)關(guān)系,三者就全看了!

(生恍然大悟,我們怎么就沒想到呢?)

[例2]求下列函數(shù)的值域

(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}

(3)y=x2+4x+3 (-31)

分析:求函數(shù)的值域應(yīng)確定相應(yīng)的定義域后再根據(jù)函數(shù)的具體形式及運算確定其值域.

對于(1)(2)可用直接法根據(jù)它們的定義域及對應(yīng)法則得到(1)(2)的值域.

對于(3)可借助數(shù)形結(jié)合思想利用它們的圖象得到值域,即圖象法.

解:(1)yR

(2)y{1,0,-1}

(3)畫出y=x2+4x+3(-31)的圖象,如圖所示,當x[-3,1]時,得y[-1,8]

Ⅳ.課堂練習

課本P24練習17.

Ⅴ.課時小結(jié)

本節(jié)課我們學習了函數(shù)的定義(包括定義域、值域的概念)、區(qū)間的概念及求函數(shù)定義域的方法.學習函數(shù)定義應(yīng)注意的問題及求定義域時的各種情形應(yīng)該予以重視.(本小結(jié)的內(nèi)容可由學生自己來歸納)

Ⅵ.課后作業(yè)

課本P28,習題1、2.

相信《2024高一函數(shù)課件(模板11篇)》一文能讓您有很多收獲!“幼兒教師教育網(wǎng)”是您了解幼師資料,工作計劃的必備網(wǎng)站,請您收藏yjs21.com。同時,編輯還為您精選準備了高一函數(shù)課件專題,希望您能喜歡!

相關(guān)推薦

  • 高一函數(shù)課件 這篇“高一函數(shù)課件”是幼兒教師教育網(wǎng)小編精心制作的,希望您能夠喜歡它,并從中獲得幫助。教案和課件是每位教師為上課準備的必要材料,但它們并非隨隨便便就能寫好。只有寫好教案,才能打造出完整的課堂教學。...
    2023-07-03 閱讀全文
  • 指數(shù)函數(shù)課件模板 “指數(shù)函數(shù)課件”是由幼兒教師教育網(wǎng)小編為您搜集整理的內(nèi)容。教案課件同樣是老師工作中的重要組成部分,因此我們老師必須對其予以重視。教師需要不斷總結(jié)教學經(jīng)驗,以提高教案制定水平。希望這些資料能夠?qū)δ墓ぷ骱蛯W習產(chǎn)生實際的推動效果!...
    2024-01-11 閱讀全文
  • 反函數(shù)課件(模板五篇) 在教學工作者實際的教學活動中,時常要開展教案準備工作,教案有助于順利而有效地開展教學活動。那么問題來了,教案應(yīng)該怎么寫?以下是小編收集整理的反比例函數(shù)的圖像和性質(zhì)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。反函數(shù)課件 篇1【學習目標】1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會反比例函數(shù)...
    2024-11-16 閱讀全文
  • 高一函數(shù)課件十三篇 請看下面欄目小編為您整理的“高一函數(shù)課件”相關(guān)的完整數(shù)據(jù),希望本文內(nèi)容能為您提供寶貴的幫助。老師根據(jù)事先準備好的教案課件內(nèi)容給學生上課,每天老師都需要寫自己的教案課件。教案編寫是教師進行教學投入的重要支持。...
    2024-06-04 閱讀全文
  • 高一函數(shù)課件收藏 在進行學生授課前,教師通常會提前準備好教案課件,相信大家對此并不陌生。編寫完整的教案有助于完成授課任務(wù),但如何制作牢靠的課件教案呢?不妨來查閱一下欄目小編整理的“高一函數(shù)課件”知識點總結(jié),希望對你有所幫助,并歡迎與朋友分享!...
    2023-06-02 閱讀全文

這篇“高一函數(shù)課件”是幼兒教師教育網(wǎng)小編精心制作的,希望您能夠喜歡它,并從中獲得幫助。教案和課件是每位教師為上課準備的必要材料,但它們并非隨隨便便就能寫好。只有寫好教案,才能打造出完整的課堂教學。...

2023-07-03 閱讀全文

“指數(shù)函數(shù)課件”是由幼兒教師教育網(wǎng)小編為您搜集整理的內(nèi)容。教案課件同樣是老師工作中的重要組成部分,因此我們老師必須對其予以重視。教師需要不斷總結(jié)教學經(jīng)驗,以提高教案制定水平。希望這些資料能夠?qū)δ墓ぷ骱蛯W習產(chǎn)生實際的推動效果!...

2024-01-11 閱讀全文

在教學工作者實際的教學活動中,時常要開展教案準備工作,教案有助于順利而有效地開展教學活動。那么問題來了,教案應(yīng)該怎么寫?以下是小編收集整理的反比例函數(shù)的圖像和性質(zhì)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。反函數(shù)課件 篇1【學習目標】1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會反比例函數(shù)...

2024-11-16 閱讀全文

請看下面欄目小編為您整理的“高一函數(shù)課件”相關(guān)的完整數(shù)據(jù),希望本文內(nèi)容能為您提供寶貴的幫助。老師根據(jù)事先準備好的教案課件內(nèi)容給學生上課,每天老師都需要寫自己的教案課件。教案編寫是教師進行教學投入的重要支持。...

2024-06-04 閱讀全文

在進行學生授課前,教師通常會提前準備好教案課件,相信大家對此并不陌生。編寫完整的教案有助于完成授課任務(wù),但如何制作牢靠的課件教案呢?不妨來查閱一下欄目小編整理的“高一函數(shù)課件”知識點總結(jié),希望對你有所幫助,并歡迎與朋友分享!...

2023-06-02 閱讀全文
成仁伊人| 亚洲欧美九九| 激情小说激情视频| 爆艹婷婷| 一本久道久久综合狠狠躁AV| 日本人妻强伦久久| 免费视频中文字幕| 私人影院高清无码人妻| 日韩一区二区三区视频| 丁香八月欧美激情| 激情图区一区二区三区| 色中色中文| 亚洲Av无码Av日韩Av网站| 熟妇色在线| 欧美淫秽视频费网站| 色婷五月| 日本a在线观看视频| 不卡的AV黄色网站| 一区在线导航发布| 国产开嫩苞视频在线观看| 国产酒店3p视频| 开心网色播电影| 黄色网站久久久| 美日韩一级黄色视频| 人人入人人爱| 中文字幕久久久要要| 国产6区在线播放视频| 人妻色综合网站| 香蕉太久久| 黄色视屏无码| 久久久久久国产精品MV| porn天美麻豆| 人人爽人妻AⅤ精品| 亚洲AV无码成人精品区狼人影院| 久久内裤| 亚洲AV无码一区二区二三区| 日韩视频网站AA| 日韩无码高清成人| 综合色图亚洲| 久久AV无码| 夜色直播免费网站在线播放|